首页> 外文学位 >Temperature and Cooling Management in Computing Systems.
【24h】

Temperature and Cooling Management in Computing Systems.

机译:计算系统中的温度和冷却管理。

获取原文
获取原文并翻译 | 示例

摘要

Temperature and cooling are critical aspects of design in today's and future computing systems. High temperature has a significant impact on reliability, performance, leakage power and cooling energy costs. State of the art temperature management techniques come with performance overhead and do not optimize for cooling energy costs. Energy management techniques usually focus on optimizing the computing energy without considering the impact on temperature or cooling system. In general, managing temperature, cooling and energy separately leads to suboptimal solutions. In this thesis we introduce a new hierarchical approach that manages the temperature, cooling and energy problems jointly and with low overhead. Our approach addresses microarchitecture, core, socket and system levels.;At the microarchitectural level we achieve temperature and energy optimizations by eliminating the redundant writes to the register file at minimal performance overhead. The experimental results show that our technique is able to achieve on average 22% energy savings in register file with 4°C reduction in temperature. We next introduce a novel core level proactive thermal management technique that intelligently allocates jobs across cores of a single CPU socket to create a better thermal balance across the chip. We introduce a novel temperature predictor that is based on the band limited property of the temperature frequency spectrum where the prediction coefficients can be identified accurately at design time. Our results show that applying our algorithm considerably reduces the aver- age system temperature, hottest core temperature, and improves performance by 6°C, 8°C and 72% respectively. At the CPU socket level, we propose a new algorithm which schedules the workload between sockets to minimize cooling energy by creating a better balance in temperature between the sockets. The reported results show that combining the socket level with the core level optimizations can result in cooling energy savings of 80% on average at performance overhead of less than 1%. Finally, we describe a combined temperature, cooling and energy management approach that significantly lowers the cooling energy costs of the system as well as the operational energy of memory. We introduce a comprehensive thermal and cooling model which is used for online decisions. This technique clusters the memory accesses to subset of memory modules in tandem with balancing the temperature between and within the CPU sockets. The experimental results show that our method delivers an average cooling and memory energy savings of up to 70% compared to the state of the art techniques at performance overhead of less than 1%.
机译:温度和冷却是当今和未来计算系统中设计的关键方面。高温会对可靠性,性能,泄漏功率和冷却​​能源成本产生重大影响。最先进的温度管理技术会带来性能开销,并且无法针对冷却能源成本进行优化。能量管理技术通常专注于优化计算能量,而不考虑对温度或冷却系统的影响。通常,温度,冷却和能量管理分别导致次优解决方案。在本文中,我们介绍了一种新的分层方法,该方法可以以较低的开销共同管理温度,冷却和能源问题。我们的方法解决了微体系结构,内核,套接字和系统级别。在微体系结构级别,我们通过消除对寄存器文件的冗余写入以最小的性能开销实现了温度和能量的优化。实验结果表明,我们的技术能够在温度降低4°C的情况下平均减少22%的寄存器文件能耗。接下来,我们介绍一种新颖的内核级主动热管理技术,该技术可以智能地在单个CPU插槽的各个内核之间分配作业,从而在整个芯片上创造更好的热平衡。我们介绍了一种基于温度频谱的带限属性的新型温度预测器,其中可以在设计时准确地确定预测系数。我们的结果表明,应用我们的算法可大大降低平均系统温度,最热的核心温度,并将性能分别提高6°C,8°C和72%。在CPU插槽级别,我们提出了一种新算法,该算法可安排插槽之间的工作量,以通过在插槽之间建立更好的温度平衡来最大程度地降低冷却能量。报告的结果表明,将套接字级别与内核级别优化相结合可以在平均性能开销低于1%的情况下平均节省80%的冷却能耗。最后,我们描述了温度,冷却和能量管理相结合的方法,该方法可显着降低系统的冷却能量成本以及内存的运行能量。我们介绍了用于在线决策的综合热和冷却模型。此技术通过平衡CPU插槽之间和CPU插槽内部的温度,将对内存模块子集的内存访问串联在一起。实验结果表明,与现有技术相比,我们的方法在不到1%的性能开销下平均节省了70%的内存和内存。

著录项

  • 作者

    Ayoub, Raid.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Computer engineering.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号