首页> 外文学位 >The synthesis of active biomaterials through nanofabrication and sol -gel encapsulation of liposomes and membrane proteins.
【24h】

The synthesis of active biomaterials through nanofabrication and sol -gel encapsulation of liposomes and membrane proteins.

机译:通过纳米制造和脂质体和膜蛋白的溶胶-凝胶封装来合成活性生物材料。

获取原文
获取原文并翻译 | 示例

摘要

The following dissertation reveals the latest advancements in developing self-sustaining hybrid nano-systems. Three areas of research were initiated: (1) Dielectrophoretic (DEP) mediation of hybrid assembly, (2) Solar powered proton pumping films, and (3) Silica materials with biochemical output for integration with nano-devices.;The first topic of research was devoted to creating reliable hybridization platforms. This was achieved by implementing AC electric-field forces. One of the primary considerations in utilizing DEP is buffer conductivity. The initial medium used to preserve biomotor functionality was too conductive and AC field effects were significantly reduced. Subsequent testing with lower ionic strength indicated that the biomolecules were repelled from field intense regions. Hence, nano-electrode arrays were reconfigured to trap device components. Initial results showed promising potential but current lithographic limitations require new nanofabrication methodologies to obtain the desired electrode design.;The second research project was focused on creating solar powered biomaterials. Liposomes containing bR proton pumping proteins and pyranine fluorescent dye into phospholipid vesicles were encapsulated within a silica matrix. The characteristic 402/456 nm pyranine peaks blue shifted upon acidification by bR. The proteoliposomes were mixed in a 3:1 ratio with tetramethyl orthosilicate (TMOS) sol respectively to provide a solar powered thin proteogel films. Ultimately, the ability to prepare these proteogels enabled the establishment of a proton gradient, and therefore opportunities to use these materials for biologically based power generation.;The third research project involved engineering nanobiochemical reaction environments within a three-dimensional construct. The goal here was to recruit encapsulated enzymes to actively synthesize biochemical compounds. These compounds were subsequently collected and used as a fuel source for integrated nano-devices. Through actinic stimulation 533 nmol ATP was produced/mg ATPase after 1 hour of light incubation. The ATP that was produced could be utilized for a variety of integrated hybrid nano-devices including the rotation of Ni bars powered by the F1-ATPase biomotor. The resultant biomimetic system demonstrated that a robust, biofunctionalized glassy material could be synthesized to actively engage in biochemical reactions.
机译:以下论文揭示了发展自我维持的混合纳米系统的最新进展。启动了三个研究领域:(1)混合组件的介电(DEP)介导;(2)太阳能质子泵送薄膜;(3)具有生化输出的二氧化硅材料,可与纳米装置集成。致力于创建可靠的杂交平台。这是通过实施交流电场力实现的。利用DEP的主要考虑因素之一是缓冲液电导率。用于保持生物动力功能的初始介质过于导电,并且交流电场效应大大降低。随后具有较低离子强度的测试表明,生物分子被电场密集区域排斥。因此,纳米电极阵列被重新配置以捕获器件组件。最初的结果表明潜力无限,但当前的光刻限制要求采用新的纳米加工方法来获得所需的电极设计。;第二个研究项目专注于制造太阳能生物材料。将含有bR质子泵蛋白和吡喃荧光染料的磷脂脂质体包裹在二氧化硅基质中。通过bR酸化后,特征性402/456 nm吡喃峰蓝移。将蛋白脂质体分别以3:1的比例与原硅酸四甲酯(TMOS)溶胶混合,以提供太阳能薄蛋白凝胶薄膜。最终,制备这些蛋白的能力使质子梯度得以建立,因此有机会将这些材料用于生物发电。第三项研究项目涉及在三维构造中工程化纳米生物化学反应环境。这里的目标是招募被包囊化的酶以主动合成生物化学化合物。这些化合物随后被收集并用作集成纳米装置的燃料来源。在光孵育1小时后,通过光化刺激产生533 nmol ATP / mg ATP酶。产生的ATP可用于多种集成的混合纳米设备,包括由F1-ATPase生物马达提供动力的Ni条的旋转。所得的仿生系统证明,可以合成一种坚固的,生物功能化的玻璃状材料,以积极参与生化反应。

著录项

  • 作者

    Soong, Ricky Kai.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biomedical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号