首页> 外文学位 >Performance enhancement approaches for a dual energy X-ray imaging system.
【24h】

Performance enhancement approaches for a dual energy X-ray imaging system.

机译:双能量X射线成像系统的性能增强方法。

获取原文
获取原文并翻译 | 示例

摘要

Dual energy imaging is a technique whereby an object is scanned with X-rays of two levels of energies to extract information about the object's atomic composition (Z). This technique is based on the fact that the X-ray absorption coefficient decreases with X-ray energy for low-Z materials, but begins to increase for high-Z materials due to the onset of pair production. Methods using the ratio of the attenuations for high-energy to low-energy images as an indicator of Z value have been proposed by several people. However, the statistical errors associated with the systems make those indicators unreliable. This thesis will discuss the problems associated with using a dual-energy system for high-atomic-number material (also known as high Z material) detection. We will identify the sources of noise that hinder system performance and propose solutions for noise reduction. Later chapters will deal with methods to automate the high Z detection process. We use a method called adaptive masking to identify possible high Z objects and reduce the false alarms. For objects shielded by materials common in a cargo container, we propose a layer separation approach to estimate the ratio of the high-and low-energy attenuations of the shielded objects. The approaches provided in this thesis are able to enhance the detection rate and reduce the false alarms significantly.
机译:双重能量成像是一种技术,通过该技术可以用两种能量的X射线扫描对象,以提取有关对象的原子组成(Z)的信息。该技术基于以下事实:对于低Z材料,X射线吸收系数随X射线能量的增加而降低,但由于成对的开始,对于高Z材料,X射线的吸收系数开始增加。一些人已经提出了使用高能图像与低能图像的衰减比作为Z值指标的方法。但是,与系统相关的统计错误使这些指标不可靠。本文将讨论与使用双能量系统进行高原子序数材料(也称为高Z材料)检测有关的问题。我们将找出阻碍系统性能的噪声源,并提出降低噪声的解决方案。后面的章节将介绍自动执行高Z检测过程的方法。我们使用一种称为自适应屏蔽的方法来识别可能的高Z对象并减少误报。对于用集装箱中常见材料屏蔽的物体,我们提出了一种层分离方法来估计屏蔽物体的高能和低能衰减之比。本文提供的方法能够提高检测率,并显着减少误报。

著录项

  • 作者

    Fu, Kenneth.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.;Physics Radiation.;Physics Nuclear.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号