首页> 外文学位 >Coarse-graining Kohn-Sham Density Functional Theory.
【24h】

Coarse-graining Kohn-Sham Density Functional Theory.

机译:粗粒度的Kohn-Sham密度泛函理论。

获取原文
获取原文并翻译 | 示例

摘要

Defects, though present in relatively minute concentrations, play a significant role in determining macroscopic properties. Even vacancies, the simplest and most common type of defect, are fundamental to phenomena like creep, spall and radiation ageing. This necessitates an accurate characterization of defects at physically relevant concentrations, which is typically in parts per million. This represents a unique challenge since both the electronic structure of the defect core as well as the long range elastic field need to be resolved simultaneously. Unfortunately, accurate ab-initio electronic structure calculations are limited to a few hundred atoms, which is orders of magnitude smaller than that necessary for a complete description. Thus, defects represent a truly challenging multiscale problem.;Density functional theory developed by Hohenberg, Kohn and Sham (DFT) is a widely accepted, reliable ab-initio method for computing a wide range of material properties. We present a real-space, non-periodic, finite-element and max-ent formulation for DFT. We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, we develop parallel finite-element and max-ent implementations of this formulation capable of performing both all-electron and pseudopotential calculations. We assess the accuracy of the formulation through selected test cases and demonstrate good agreement with the literature.;Traditional implementations of DFT solve for the wavefunctions, a procedure which has cubic-scaling with respect to the number of atoms. This places serious limitations on the size of the system which can be studied. Further, they are not amenable to coarse-graining since the wavefunctions need to be orthonormal, a global constraint. To overcome this, we develop a linear-scaling method for DFT where the key idea is to directly evaluate the electron density without solving for the individual wavefunctions. Based on this linear-scaling method, we develop a numerical scheme to coarse-grain DFT derived solely based on approximation theory, without the introduction of any new equations and resultant spurious physics. This allows us to study defects at a fraction of the original computational cost, without any significant loss of accuracy. We demonstrate the efficiency and efficacy of the proposed methods through examples. This work enables the study of defects like vacancies, dislocations, interfaces and crack tips using DFT to be computationally viable.
机译:缺陷虽然以相对较小的浓度存在,但在确定宏观性能方面起着重要作用。即使是最简单,最常见的缺陷类型,空位也是蠕变,剥落和辐射老化等现象的基础。这需要在物理上相关的浓度(通常为百万分之一)中准确表征缺陷。这是一个独特的挑战,因为缺陷芯的电子结构以及远距离弹性场都需要同时解决。不幸的是,精确的从头算起的电子结构计算仅限于几百个原子,比完整描述所需的原子数小几个数量级。因此,缺陷代表了一个真正具有挑战性的多尺度问题。Hohenberg,Kohn和Sham(DFT)提出的密度泛函理论是一种广泛接受的,可靠的从头算方法,用于计算各种材料特性。我们提出了DFT的实空间,非周期,有限元和最大实体公式。我们将原始的变分问题转化为局部鞍点问题,并通过证明最小化子的存在来证明其适定性。此外,我们证明了包括数值正交项在内的有限元逼近的收敛性。基于域分解,我们开发了该公式的并行有限元和max-ent实现,能够执行全电子和伪电势计算。我们通过选定的测试用例评估了配方的准确性,并与文献证明了很好的一致性。DFT的传统实现解决了波函数,该过程具有相对于原子数的立方缩放。这严重限制了可以研究的系统的大小。此外,它们不适合粗粒度,因为波函数需要是正交的,全局约束。为了克服这个问题,我们开发了一种用于DFT的线性缩放方法,其主要思想是直接求解电子密度而无需求解各个波函数。基于这种线性缩放方法,我们开发了一种仅基于近似理论导出的粗粒度DFT的数值方案,而无需引入任何新的方程式和由此产生的杂散物理。这使我们能够以原始计算成本的一小部分来研究缺陷,而没有任何重大的准确性损失。我们通过示例演示了所提出方法的效率和功效。这项工作使得使用DFT研究缺陷(如空位,位错,界面和裂纹尖端)在计算上可行。

著录项

  • 作者

    Suryanarayana, Phanish.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号