首页> 外文学位 >Understanding and improving respiratory succinate production from glycerol by Actinobacillus succinogenes.
【24h】

Understanding and improving respiratory succinate production from glycerol by Actinobacillus succinogenes.

机译:理解并改善琥珀酸放线杆菌引起的呼吸性琥珀酸琥珀酸酯的生产。

获取原文
获取原文并翻译 | 示例

摘要

Succinic acid tops the U.S. Department of Energy's list of value-added products from biomass, because it has the potential, if produced economically, to become the feedstock for a bulk chemical industry currently based on maleic anhydride, a petrochemical. In addition to the large market potential for succinate and its immediate derivatives, bio-based succinate production has the added environmental benefit of using CO2, a greenhouse gas, as a substrate. Actinobacillus succinogenes 130Z naturally produces among the highest levels of succinate from a variety of inexpensive carbon substrates. Previous reports of A. succinogenes's metabolic capabilities mainly used glucose as a feedstock and provided insight into several key factors controlling succinate production. Conversely, little is known about how A. succinogenes metabolizes glycerol, a waste product of biodiesel manufacture and an inexpensive feedstock with potential application in bio-based succinate production.;As suggested by our manual annotation of its genome, A. succinogenes cannot ferment glycerol in defined minimal medium but it can metabolize glycerol by aerobic or anaerobic respiration. We investigated A. succinogenes 's glycerol metabolism in a variety of respiratory conditions by comparing growth, metabolite production, and in vitro activity of terminal oxidoreductases. Under conditions of nitrate-respiration and fully aerobic respiration, acetate was the primary acid produced from glycerol. However, succinate was the primary product of dimethyl sulfoxide-respiring cultures and cultures grown in microaerobic conditions. The highest succinate yield observed was 0.69 mol succinate/mol glycerol (69% of the maximum theoretical yield) under microaerobic conditions. We also show that A. succinogenes can grow and produce succinate on partially refined glycerols obtained directly from biodiesel manufacture.;We used recently developed genetic tools to create knockout mutants of A. succinogenes. The gene knockout strategy uses natural transformation to introduce linearized DNA into the cells. The isocitrate dehydrogenase gene (icd) from Escherichia coli was used as a selection marker, enabling positive selection of recombination events based on the glutamate auxotrophy of A. succinogenes. After successful deletion of the target gene, we employed the Saccharomyces cerevisiae flippase recombinase to remove the icd marker, enabling its re-use. With the aim of increasing succinate yields, the A. succinogenes pflB gene (encoding pyruvate formate-lyase, PFL) was targeted for deletion. Strain DeltapflB produced higher succinate yields than strain 130Z (0.85 mol/mol glycerol) under microaerobic conditions.;In summary, in optimized respiratory conditions, A. succinogenes can conserve most of the reducing power available in glycerol for succinate production. The increased understanding of A. succinogenes 's glycerol metabolism, combined with new genetic tools, sets the stage for future strain and process development towards a highly productive and economic glycerol-to-succinate conversion process.
机译:琥珀酸在美国能源部的生物质增值产品中名列前茅,因为如果经济生产,琥珀酸有可能成为目前基于石化顺丁烯二酸酐的大宗化学工业的原料。除了琥珀酸酯及其直接衍生物的巨大市场潜力外,生物基琥珀酸酯的生产还具有额外的环境效益,即使用温室气体CO2作为底物。琥珀酸放线杆菌130Z可从各种廉价的碳底物中自然产生最高水平的琥珀酸。以前关于琥珀酸单胞菌代谢能力的报道主要使用葡萄糖作为原料,并深入了解了控制琥珀酸生产的几个关键因素。相反,关于琥珀酸短链霉菌如何代谢甘油,生物柴油生产的废品和廉价的原料,其在生物基琥珀酸生产中的潜在应用,人们知之甚少;正如我们对其基因组的人工注释所暗示的,琥珀酸短杆菌属不能发酵甘油。在限定的基本培养基中,但它可以通过有氧或无氧呼吸来代谢甘油。我们通过比较生长,代谢产物的产生和末端氧化还原酶的体外活性,研究了多种呼吸条件下的琥珀酸琥珀酸杆菌的甘油代谢。在硝酸盐呼吸和完全有氧呼吸的条件下,乙酸盐是甘油产生的主要酸。然而,琥珀酸是呼吸二甲基亚砜培养物和在微需氧条件下生长的培养物的主要产物。在微需氧条件下,观察到的最高琥珀酸酯产率为0.69 mol琥珀酸酯/ mol甘油(最大理论产率的69%)。我们还表明,琥珀酸杆菌可以在直接从生物柴油生产中获得的部分精制的甘油上生长并产生琥珀酸。基因敲除策略使用自然转化将线性化的DNA引入细胞。来自大肠杆菌的异柠檬酸脱氢酶基因(icd)被用作选择标记,能够基于琥珀酸短链霉菌的谷氨酸营养缺陷型对重组事件进行阳性选择。成功删除目标基因后,我们采用了酿酒酵母翻转酶重组酶去除了icd标记,使其能够重复使用。为了增加琥珀酸盐的产量,将琥珀酸假单胞菌pflB基因(编码丙酮酸甲酸盐裂解酶,PFL)靶向缺失。在微有氧条件下,菌株DeltapflB产生的琥珀酸酯产量高于130Z菌株(0.85 mol / mol甘油)。总之,在优化的呼吸条件下,产琥珀酸杆菌可以保留甘油中琥珀酸酯生产可用的大部分还原能力。人们对琥珀酸农杆菌的甘油代谢的了解加深,再加上新的遗传工具,为将来向高产且经济的甘油到琥珀酸酯转化过程的菌株和工艺开发奠定了基础。

著录项

  • 作者

    Schindler, Bryan David.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Microbiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号