首页> 外文学位 >System identification methods for reverse engineering gene regulatory networks.
【24h】

System identification methods for reverse engineering gene regulatory networks.

机译:逆向工程基因调控网络的系统识别方法。

获取原文
获取原文并翻译 | 示例

摘要

With the advent of high throughput measurement technologies, large scale gene expression data are available for analysis. Various computational methods have been introduced to analyze and predict meaningful molecular interactions from gene expression data. Such patterns can provide an understanding of the regulatory mechanisms in the cells. In the past, system identification algorithms have been extensively developed for engineering systems. These methods capture the dynamic input/output relationship of a system, provide a deterministic model of its function, and have reasonable computational requirements [68].;In this work, two system identification methods are applied for reverse engineering of gene regulatory networks. The first method is based on an orthogonal search; it selects terms from a predefined set of gene expression profiles to best fit the expression levels of a given output gene. The second method consists of a few cascades, each of which includes a dynamic component and a static component. Multiple cascades are added in a parallel to reduce the difference of the estimated expression profiles with the actual ones. Gene regulatory networks can be constructed by defining the selected inputs as the regulators of the output. To assess the performance of the approaches, a temporal synthetic dataset is developed. Methods are then applied to this dataset as well as the Brainsim dataset, a popular simulated temporal gene expression data [73]. Furthermore, the methods are also applied to a biological dataset in yeast Saccharomyces Cerevisiae [74]. This dataset includes 14 cell-cycle regulated genes; their known cell cycle pathway is used as the target network structure, and the criteria 'sensitivity', 'precision', and 'specificity' are calculated to evaluate the inferred networks through these two methods. Resulting networks are also compared with two previous studies in the literature on the same dataset.
机译:随着高通量测量技术的出现,大规模的基因表达数据可用于分析。已经引入了各种计算方法来根据基因表达数据分析和预测有意义的分子相互作用。这样的模式可以提供对细胞中调节机制的理解。过去,已经为工程系统广泛开发了系统识别算法。这些方法捕获了系统的动态输入/输出关系,提供了其功能的确定性模型,并具有合理的计算要求[68]。在这项工作中,两种系统识别方法被应用于基因调控网络的逆向工程。第一种方法基于正交搜索;第二种方法基于正交搜索。它从一组预定义的基因表达谱中选择术语,以最适合给定输出基因的表达水平。第二种方法由几个级联组成,每个级联包括一个动态分量和一个静态分量。并行添加多个级联,以减少估计的表达谱与实际表达谱的差异。通过将选定的输入定义为输出的调节器,可以构建基因调节网络。为了评估这些方法的性能,开发了一个时间综合数据集。然后将方法应用于该数据集以及Brainsim数据集,这是一种流行的模拟时间基因表达数据[73]。此外,该方法还应用于酿酒酵母中的生物学数据集[74]。该数据集包括14个细胞周期调控的基因。他们已知的细胞周期途径被用作目标网络结构,并通过这两种方法计算标准“敏感性”,“精密度”和“特异性”来评估推断的网络。所得网络也与文献中同一数据集上的两项先前研究进行了比较。

著录项

  • 作者

    Wang, Zhen.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Computer science.;Bioinformatics.
  • 学位 M.Sc.
  • 年度 2011
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号