首页> 外文学位 >Understanding intra- and intermolecular interactions in thiophene-containing systems.
【24h】

Understanding intra- and intermolecular interactions in thiophene-containing systems.

机译:了解含噻吩系统中的分子内和分子间相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Intra- and intermolecular organization and interactions in conjugated organic semiconductors play a critical role in the performance of devices fabricated from these materials. In organic field effect transistors (OFETs), for instance, intimate TT-stacking along with suppression of intramoleculardisorder are critical strategies towards maximizing charge mobilities. In contrast, the performance of organic light-emiting diodes (OLEDs) is enhanced by preventing strong intermolecular interactions and aggregation, both of which would otherwise give rise to charge trapping and quenching and by extension poorer device performance. The ability to understand, evaluate, and control intra- and intermolecular organization in a material is therefore invaluable to enhance and tune the electronic properties of a system.;The desire to explore ways in which these interactions can be controlled is the motivation for the molecules synthesized in this dissertation. In Chapter 3, 3,4- phenylenedioxythiophenes (PheDOTs) are introduced as attractive synthons due to their highly planar structures as elucidated from x-ray crystal structures, which could promote TT-stacking interactions. As this molecule has not been thoroughly investigated in the literature, the electrochemical properties of a family of alkyl-substituted PheDOTs are explored and elucidated. Likely owing to the ability of this planar structure to form intimate intermolecular interactions, promising conductivities are measured for freestanding films of electropolymerized pPheDOTs. Additionally, the charge-storage abilities of the electropolymerized films are evaluated and also found to be promising.;In Chapter 4, the effects on intra- and intermolecular organization caused by the presence of PheDOT are more directly investigated. When incorporated into thiophene oligomers and polymers, an improvement in both intra- and intermolecular organization are observed when compared to their all-thiophene analogs. Sulfur-oxygen interactions are believed to lock the system into a more planar conformation; this planarity in turn promotes strong intermolecular interactions. X-ray crystal structures again demonstrate that three-ring systems incorporating PheDOT are highly planar structures with close packing distances. Throughout the chapter, we demonstrate how the absorbance and emission spectra can be powerful tools to elucidate and qualify the intra- and intermolecular interactions present in the system.;In Chapter 5, molecules are designed to deliberately frustrate intermolecular packing. This is accomplished by utilizing spirobiProDOT as a core synthon. Extension of the conjugation through the four active sites on spirobiProDOT followed by electropolymerization of these systems is predicted to give a highly branched, porous and rigid network through which ion diffusion can readily occur. A variety of electrochemical and spectroelectrochemical data are brought together to evaluate this model.;While the theoretical groundwork informs the synthetic chemist of the ideal intra- and intermolecular interactions an application requires, the ability to design molecules to meet these requirements proves challenging. Nevertheless, this dissertation illustrates several design strategies as well as several readily accessible means to experimentally evaluate the intra- and intermolecular interactions present in our systems. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html).
机译:共轭有机半导体中的分子内和分子间组织及相互作用在由这些材料制成的器件的性能中起着至关重要的作用。例如,在有机场效应晶体管(OFET)中,紧密的TT堆叠以及分子内无序抑制是使电荷迁移率最大化的关键策略。相反,通过防止强烈的分子间相互作用和聚集来增强有机发光二极管(OLED)的性能,否则这两种情况都会引起电荷俘获和猝灭,并因此扩展了较差的器件性能。因此,了解,评估和控制材料中分子间和分子间组织的能力对于增强和调整系统的电子性能是无价的。探索探索可控制这些相互作用方式的愿望是分子的动力。本文进行了综合。在第3章中,由于3,4-苯二氧基噻吩(PheDOT)具有很高的平面结构(如从X射线晶体结构中阐明的那样),因此可以吸引人的合成子,这可以促进TT堆叠相互作用。由于该分子尚未在文献中进行深入研究,因此探索并阐明了一系列烷基取代的PheDOT的电化学性质。可能由于这种平面结构形成紧密的分子间相互作用的能力,对于电聚合的pPheDOT的独立膜,测量了有希望的电导率。此外,还对电聚合膜的电荷存储能力进行了评估,并被认为是有前途的。在第四章​​中,更直接地研究了由于存在PheDOT对分子内和分子间组织的影响。当将其并入噻吩低聚物和聚合物中时,与它们的全噻吩类似物相比,观察到分子内和分子间组织都有改善。据信硫-氧相互作用将系统锁定在一个更平坦的构象中。这种平面性又促进了强烈的分子间相互作用。 X射线晶体结构再次证明,结合了PheDOT的三环系统是高度平面的结构,具有紧密的堆积距离。在本章中,我们将演示吸收光谱和发射光谱如何成为阐明和鉴定系统中分子内和分子间相互作用的有力工具。在第5章中,分子被设计为故意破坏分子间的堆积。这是通过利用spirobiProDOT作为核心合成子来完成的。预计通过spirobiProDOT上的四个活性位点扩展共轭作用,然后进行这些系统的电聚合,将形成高度分支,多孔和刚性的网络,通过该网络可以轻松发生离子扩散。综合了各种电化学和光谱电化学数据以评估该模型。虽然理论基础为合成化学家提供了应用所需的理想的分子内和分子间相互作用,但设计满足这些要求的分子的能力证明具有挑战性。然而,本文阐述了几种设计策略以及几种易于使用的方法,以通过实验评估我们系统中存在的分子内和分子间的相互作用。 (可以通过佛罗里达大学图书馆网站获得本论文的全文。请检查http://www.uflib.ufl.edu/etd.html)。

著录项

  • 作者

    Shen, Dwanleen Eric.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Chemistry Organic.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号