首页> 外文学位 >Understanding and improving lithium ion batteries through mathematical modeling and experiments.
【24h】

Understanding and improving lithium ion batteries through mathematical modeling and experiments.

机译:通过数学建模和实验了解和改进锂离子电池。

获取原文
获取原文并翻译 | 示例

摘要

There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary.;One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries.;Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life.;On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases.;KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
机译:全球范围内都在努力开发具有高能量和功率密度的耐用锂离子电池,以用于包括电动和混合电动车辆在内的广泛应用。为了改善电池技术,了解电池的容量衰减机制至关重要。高能量-高功率电池需要较少容量衰减的新型电极材料和改进的电极设计。此外,对于诸如汽车应用之类的应用,电池的精确循环寿命预测是必要的。先进的锂离子电池技术的关键挑战之一是由于锂在充电和放电操作过程中的扩散而导致电极的断裂和剥落。当将锂插入正极或负极时,与插入或反插入相关的体积都会发生变化。因此,扩散引起的应力(DIS)可能导致裂纹成核和裂纹扩展,从而导致电池的机械性能下降。通过不同的数学模型,我们研究了扩散诱发应力的行为,以及电极形状,尺寸,浓度依赖的材料性能,预先存在的裂纹,相变,工作条件等对扩散诱发应力的影响。因此,我们开发了一些工具来指导耐用性电池具有更好机械稳定性的电极材料的设计。随着机械性能的下降,电池的化学降解在决定电池寿命方面也起着重要的作用。常用电解质的不稳定性会导致形成固态电解质相(SEI)。尽管SEI的形成会导致不可逆的容量损失,但是SEI层是必需的,因为它会钝化电极-电解质的界面,防止进一步的溶剂分解。 SEI层和扩散引起的应力是相互依赖的,并且彼此影响。我们研究电极材料的化学机械耦合降解,以了解电池随着循环的容量衰减。通过对化学和机械降解的理解,我们建立了一个简单的现象模型来预测电池寿命。在实验部分,我们提出了使用液态金属合金作为自愈电池电极的新概念。我们开发了一种在导电基板上制备薄膜液态镓电极的方法。这使我们能够进行一系列的电化学和表征实验,这些实验证明了液体电极会经历液-固-液转变,从而能够自我修复去插入过程中形成的裂纹。因此可以避免机械性能下降。我们还进行了从头算的计算,以了解各种锂镓相的平衡电势。关键词:锂离子电池,扩散引起的应力,自愈电极,化学和机械耦合,寿命预测模型。

著录项

  • 作者

    Deshpande, Rutooj D.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 364 p.
  • 总页数 364
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号