首页> 外文学位 >High performance radio-frequency and millimeter-wave front-end integrated circuits design in silicon-based technologies.
【24h】

High performance radio-frequency and millimeter-wave front-end integrated circuits design in silicon-based technologies.

机译:基于硅技术的高性能射频和毫米波前端集成电路设计。

获取原文
获取原文并翻译 | 示例

摘要

The wireless communication market has been explosively growing while being fueled by innovative advancements in digital communication/processing technologies along with revolutionary progression in integrated circuit (IC) technologies, manifested both in the speed of the transistors and the complexity of IC systems. The silicon-based process technologies such as complementary metal oxide semiconductor (CMOS) and silicon-germanium (SiGe) are the key driver in the wireless communication IC industry that can enable implementations of fully integrated single-chip transceivers and hence true one-chip systems of mobile terminal devices at low cost. However, developments of high-performance IC blocks and systems overcoming intrinsic vulnerabilities of the silicon-based technologies have been difficult and laborious tasks.;The objective of this research is to explore limitations and challenges of radio frequency (RF) and millimeter-wave (MMW) front-end IC designs using the silicon-based technologies, and to develop effective circuit topologies and design techniques to improve the target performance of the ICs. CMOS power amplifiers (PAs) for high data-rate mobile communications (e.g., WiMAX) and SiGe receiver front-end circuits and systems for 90 to 94 GHz (W-band) long-range wireless accesses are aimed for exploration in this research.;Detailed contents presented in this dissertation are categorized as following: 1. Fundamental limitations of active and passive devices of the silicon-based technologies (silicon CMOS and SiGe) are discussed from the perspective of transceiver IC designs. 2. The design methodology for a multi-mode linear PA fabricated in a 0.18 mum CMOS technology with enhanced low-power efficiency is presented along with thorough analysis on the novel power combining structure. The design technique and procedure to implement a multi-mode (low-power, medium-power, and high-power modes) multi-standard (WLAN and WiMAX) class-AB CMOS PA is discussed. The PA performance at various operation modes is optimized by employing a novel load impedance modulation technique using varactor-based tunable matching networks. These research works will be published in IEEE Journal of Solid-State Circuits (JSSC) in May 2011 [Publication 1]. A part of the research works has been presented in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium in 2010 [Publication 2]. 3. A new type of power combining transformer, which is appropriate for high-power (i.e., greater than 33-dBm output power) PA applications, is introduced. The proposed transformer performs the parallel (current) combining and the series (voltage) combining simultaneously in a single structure, supplementing drawbacks of conventional types of power combining transformers. The class-AB PA with the proposed combining transformer is implemented in a 0.18 mum CMOS technology, achieving a P1dB of 31.5 dBm and a Psat of 34 dB with a peak PAE of 34.9%. Measurement results show the effectiveness of the proposed PA structure for high-data rate wireless communication standards such as WiMAX. The result of this research work is submitted to IEEE Journal of Solid-State Circuits (JSSC) and is under review [Publication 3]. 4. The design methodologies for W-band (90 to 94 GHz) receiver building blocks such as a low-noise amplifier (LNA), a balun (balanced-to-unbalanced), a mixer using a SiGe technology is presented focusing on performance optimization techniques. Detailed design procedures for individual circuits are discussed with supportive simulation and measurement results. An integrated receiver system is also implemented in a 200-GHz-fT SiGe technology, achieving a maximum conversion gain of 36.3 dB and a minimum noise figure of 10 dB at 91 GHz. The designed receiver demonstrated the highest conversion gain among recently reported receivers built in silicon-based technologies operating beyond 90 GHz. These research works have been presented in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium in 2008 [Publication 4], and published in Electronics Letters in 2009 [Publication 5].
机译:在数字通信/处理技术的创新进步以及集成电路(IC)技术的革命性进步的推动下,无线通信市场得到了爆炸性的增长,这在晶体管的速度和IC系统的复杂性两方面都得到了体现。诸如互补金属氧化物半导体(CMOS)和硅锗(SiGe)之类的基于硅的处理技术是无线通信IC行业中的关键驱动力,可以实现完全集成的单芯片收发器,从而实现真正的单芯片系统低成本的移动终端设备。然而,克服基于硅技术固有漏洞的高性能IC模块和系统的开发一直是艰巨而艰巨的任务。;本研究的目的是探索射频(RF)和毫米波( MMW)前端IC使用基于硅的技术进行设计,并开发有效的电路拓扑和设计技术以提高IC的目标性能。本研究旨在探索用于90至94 GHz(W波段)远程无线访问的高数据速率移动通信(例如WiMAX)和SiGe接收机前端电路和系统的CMOS功率放大器(PA)。 ;本文的主要内容归纳如下:1.从收发器IC设计的角度讨论了硅技术(硅CMOS和SiGe)的有源和无源器件的基本局限性。 2.提出了采用0.18微米CMOS技术制造的具有增强的低功耗效率的多模线性功率放大器的设计方法,并对新颖的功率组合结构进行了深入的分析。讨论了实现多模式(低功率,中功率和高功率模式)多标准(WLAN和WiMAX)AB类CMOS PA的设计技术和过程。通过采用基于变容二极管的可调匹配网络的新型负载阻抗调制技术,可以优化各种工作模式下的PA性能。这些研究成果将于2011年5月发表在IEEE固态电路杂志(JSSC)上[出版物1]。部分研究工作已在2010年IEEE射频集成电路(RFIC)研讨会上发表[出版物2]。 3.推出了一种新型的功率组合变压器,适用于高功率(即输出功率大于33 dBm)PA应用。所提出的变压器在单个结构中同时执行并联(电流)组合和串联(电压)组合,弥补了传统类型的功率组合变压器的缺点。带有建议的组合变压器的AB类功率放大器采用0.18微米CMOS技术实现,可实现31.5 dBm的P1dB和34 dB的Psat,峰值PAE为34.9%。测量结果表明,所提出的PA结构对于高数据速率无线通信标准(例如WiMAX)的有效性。这项研究工作的结果已提交给IEEE固态电路杂志(JSSC),并且正在审查中[出版物3]。 4.提出了针对W波段(90至94 GHz)接收机构建模块的设计方法,例如低噪声放大器(LNA),平衡-不平衡转换器(平衡至不平衡),使用SiGe技术的混频器,重点关注性能优化技术。讨论了单个电路的详细设计过程,并提供了支持的仿真和测量结果。集成接收器系统也采用200 GHz-fT SiGe技术实现,在91 GHz时可实现36.3 dB的最大转换增益和10 dB的最小噪声系数。在最近报道的采用工作在90 GHz以上的基于硅的技术中构建的接收器中,设计的接收器展示了最高的转换增益。这些研究成果已在2008年的IEEE射频集成电路(RFIC)研讨会上发表[出版物4],并在2009年的《电子快报》上发表[出版物5]。

著录项

  • 作者

    Kim, Jihwan.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号