首页> 外文学位 >Heat and mass transfer correlations for steam methane reforming in non-adiabatic, process-intensified catalytic reactors.
【24h】

Heat and mass transfer correlations for steam methane reforming in non-adiabatic, process-intensified catalytic reactors.

机译:非绝热,过程强化催化反应器中蒸汽甲烷重整的传热和传质相关性。

获取原文
获取原文并翻译 | 示例

摘要

Because of its high energy density, hydrogen is a desirable energy source for the achievement of a renewable energy landscape. Though production methods like thermolysis, electrolysis and biomass conversion, among others, are thought to be long term renewable solutions, catalytic steam methane reforming (SMR) is currently the predominant mechanism to produce hydrogen on an industrial scale. The highly endothermic, transport-limited reforming process has also been scaled down through process intensification to create efficient small-scale hydrogen-generating systems. One proposed geometry utilizes a catalytic finned cylinder that provides a manufacturable solution to enable high-efficiency heat exchange and SMR reaction. An accurate representation of the reactor performance characteristics is imperative to the design of small-scale systems.;The Nusselt and Sherwood numbers, the respective dimensionless temperature and concentration gradients, are commonly used to model the transport characteristics. Previous works have outlined the significance of modeling techniques that include radial diffusion to capture the bulk-phase diffusive resistance. However, prior studies have either over-simplified the transport to neglect diffusion in the bulk fluid or employed CFD to include the relevant effects. A considerable limitation of CFD-derived solutions is a high degree of computational intensity.;In the current study, local transport coefficients are determined for the SMR reaction in a catalytic microchannel. The 2-D cylindrical transport equations are simplified based on approximations from prior work to represent the channel geometry. The applied assumptions dramatically decrease the model's computation time. A finite central-differencing scheme is implemented to solve the coupled transport equations with the reaction kinetics, and is solved through simultaneous matrix inversion. A kinetic model for SMR reactions is included as a model subroutine to describe the highly non-linear transport/kinetic interactions, while accounting for species adsorption/desorption to and from the catalyst. The transport model is compared to known solutions for the desired boundary conditions to validate the diffusive effects. The full model is validated against experimental data, and is able to reasonably predict the expected transport behavior and chemical kinetic interactions in the catalytic microchannel.
机译:由于氢的能量密度高,氢是实现可再生能源格局的理想能源。尽管诸如热解,电解和生物质转化等生产方法被认为是长期的可再生解决方案,但催化蒸汽甲烷重整(SMR)当前是在工业规模上生产氢的主要机制。高度吸热,受运输限制的重整过程也已通过过程强化而缩小规模,以创建高效的小规模制氢系统。一种提出的几何形状利用催化翅片缸,该催化翅片缸提供了可制造的解决方案,以实现高效的热交换和SMR反应。对于小规模系统的设计,必须准确地表示反应堆的性能特征。Nusselt和Sherwood数,各自的无量纲温度和浓度梯度通常用于模拟输运特征。先前的工作概述了建模技术的重要性,这些技术包括径向扩散以捕获体相扩散阻力。但是,先前的研究要么简化了传输以忽略散装流体中的扩散,要么采用CFD来包括相关影响。 CFD派生解决方案的显着局限性是高度的计算强度。;在当前的研究中,确定了催化微通道中SMR反应的局部输运系数。基于先前工作的近似值,可以简化二维圆柱输运方程,以表示通道的几何形状。应用的假设大大减少了模型的计算时间。实施了有限中心微分方案,以解决带有反应动力学的耦合输运方程,并通过同时矩阵求逆来求解。 SMR反应动力学模型作为模型子例程包含在内,它描述了高度非线性的传输/动力学相互作用,同时考虑了与催化剂之间的物质吸附/解吸。将传输模型与已知解决方案进行比较,以得出所需的边界条件,以验证扩散效果。完整的模型已针对实验数据进行了验证,并且能够合理地预测催化微通道中的预期传输行为和化学动力学相互作用。

著录项

  • 作者

    Kimmel, Adam S.;

  • 作者单位

    Marquette University.;

  • 授予单位 Marquette University.;
  • 学科 Engineering Chemical.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号