首页> 外文学位 >Mechanisms Dictating Relaxation and Fracture in Physically Associated and Ionically Crosslinked Triblock Copolymer Gels.
【24h】

Mechanisms Dictating Relaxation and Fracture in Physically Associated and Ionically Crosslinked Triblock Copolymer Gels.

机译:在物理缔合和离子交联的三嵌段共聚物凝胶中,决定松弛和断裂的机理。

获取原文
获取原文并翻译 | 示例

摘要

Understanding molecular mechanisms which dictate the macroscopic properties of a material is crucial for engineering solutions to enhance mechanical performance. For synthetic polymer gels, this understanding is of particular importance in that these materials exhibit drastically reduced strengths and toughnesses in comparison to naturally occurring, biological gels. Currently for synthetic polymer networks, the gold standard for obtaining high toughness is through combining two disparate networks into a single functional material. These materials, referred to as double network gels, demonstrate both high strength and toughness but have no fatigue resistance as energy dissipation comes at the expense of breaking covalent bonds. In this work, the structure and performance of double network gels is replicated using non-covalently associated networks.;The first of these networks is composed of symmetric, amphiphilic triblock copolymers which provide a facile, self-assembled route toward the formation of a physically crosslinked polymer hydrogel. Due to a well-defined network architecture and homogeneity of crosslinks, these materials are capable of withstanding much larger strains than chemically crosslinked materials of comparable stiffness. In the Shull research group, thermoreversible acrylic block copolymer gels have been widely studied, making these materials excellent candidates for use as model networks that lack chemical crosslinks. The first half of this dissertation examines the synthesis of these materials, mechanisms determining gel relaxation, and methods for establishing homogeneous aqueous networks through thermoreversible assembly and vapor phase solvent exchange.;Upon immersion into solutions of divalent cations, these networks form metallic complexes that serve as dynamic, pseudo-covalent linkages which replace the second, tightly crosslinked network in a double network structure. The second half of this dissertation explores the mechanical response of these ionically crosslinked networks. These materials witness an increase in both stiffness and toughness by 2 to 3 orders of magnitude depending on pH, solution concentration, and cation identity. Additionally, due to the non-covalent character of the network linkages, these gels exhibit a degree of recoverable energy dissipation not seen in conventional double network gels.
机译:了解决定材料宏观性能的分子机制对于提高机械性能的工程解决方案至关重要。对于合成聚合物凝胶,这种理解特别重要,因为与天然存在的生物凝胶相比,这些材料的强度和韧性大大降低。当前,对于合成聚合物网络,获得高韧性的金标准是通过将两个不同的网络合并为一种功能材料。这些材料被称为双网状凝胶,既显示出高强度和韧性,又没有耐疲劳性,因为耗能以破坏共价键为代价。在这项工作中,使用非共价缔合的网络复制了双网络凝胶的结构和性能。这些网络中的第一个由对称的两亲性三嵌段共聚物组成,它们提供了一种容易的,自组装的途径来形成物理结构交联的聚合物水凝胶。由于定义明确的网络架构和交联的均质性,这些材料比具有相当刚度的化学交联材料能够承受更大的应变。在Shull研究小组中,对热可逆丙烯酸嵌段共聚物凝胶进行了广泛的研究,使这些材料成为缺乏化学交联的模型网络的理想候选材料。本文的前半部分探讨了这些材料的合成,确定凝胶弛豫的机理以及通过热可逆组装和气相溶剂交换建立均相水性网络的方法。当浸入二价阳离子溶液中时,这些网络形成金属配合物作为动态的伪共价链接,它替代了双网络结构中的第二个紧密交联的网络。本文的后半部分探讨了这些离子交联网络的机械响应。这些材料的硬度和韧性均增加了2到3个数量级,具体取决于pH,溶液浓度和阳离子特性。另外,由于网络键的非共价特性,这些凝胶表现出一定程度的可恢复的能量耗散,这在常规的双网络凝胶中是看不到的。

著录项

  • 作者

    Henderson, Kevin J.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Polymer.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号