首页> 外文学位 >The Aspergillus nidulans Galf biosynthesis pathway is a promising drug target.
【24h】

The Aspergillus nidulans Galf biosynthesis pathway is a promising drug target.

机译:构巢曲霉Galf生物合成途径是有希望的药物靶标。

获取原文
获取原文并翻译 | 示例

摘要

Human systemic fungal infections are increasing, and causing high morbidity and mortality. Treatment is challenging because fungi share many metabolic pathways with mammals. Current antifungals are losing effectiveness due to drug resistance. In immunocompromised patients Aspergillus fumigatus causes systemic aspergillosis, the most important airborne fungal disease. Mortality from aspergillosis exceeds 50% even with aggressive treatment. We need novel antifungal drug targets. Fungal cell wall components are promising targets for antifungal therapy as they are essential for fungi and absent from humans.;The sugar galactofuranose (Galf) is a 5-memberd ring form of galactose that is found in the cell walls of many fungi, but not in mammals. I used molecular biology and microscopy techniques to characterize Galf biosynthesis enzymes in the model species A. nidulans. I studied three enzymes that catalyze sequential steps in Galf biosynthesis: UgmA, UgtA and UgeA. UDP-galactopyranose mutase (UgmA) creates UDP-galactofuranose (UDP-Galf) from UDP galactopyranose (UDP-Galp) in the cytoplasm. The UDP-Gal f transporter (UgtA) moves UDP-Galf into membrane bound organelles for incorporation into cell wall compartments. Upstream of UgmA, UDP-glucose/galactose epimerase (UgeA) interconverts UDP-glucose into UDP-Galp, the UgmA substrate. Neither UgmA nor UgtA has a human counterpart; UgeA is in the Leloir galactose metabolism pathway that found in many organisms from bacteria to humans.;None of UgeA, UgmA and UgtA is essential for viability of A. nidulans, but deleting any one of them substantially reduces colony growth and sporulation (Figure i). Wild type and Galf defective strains (ugeAΔ, ugmAΔ and ugtAΔ) were quantified for colony growth, cell morphometry, spore formation and germination, as well as wall architecture. The abundance of these proteins was regulated using the alcA promoter. Galf content was assessed by immunolocalization in the Gal f defective strains, showing that those strains lacked immunodetectable Galf. Gene products were localized with fluorescent protein tags; both UgmA and UgeA were cytoplasmic, whereas UgtA was Golgi localized. Wall surfaces were imaged and force-probed using transmission electron microscopy and atomic force microscopy. Overall, Galf deletion strains had aberrant wall maturation, and poorly consolidated surfaces. Our results indicate that Galf is necessary for abundant sporulation, wild type growth and full maturation of Aspergillus cell wall.;Galf deletion strains were assessed for sensitivity to antifungal agents in clinical use. They were significantly more sensitive to caspofungin and amphotericin B that target cell wall synthesis and cell membrane chemistry, respectively. Thus, anti-Galf drugs (once created) may be useful in combination with existing antifungal drugs. In summary, Galf biosynthesis pathway appears to be promising as an antifungal drug development target.
机译:人类系统性真菌感染正在增加,并导致高发病率和死亡率。治疗具有挑战性,因为真菌与哺乳动物共有许多代谢途径。由于抗药性,当前的抗真菌剂正在失去效力。在免疫功能低下的患者中,烟曲霉会引起全身性曲霉病,这是最重要的空气传播真菌病。即使采用积极治疗,曲霉病死亡率也超过50%。我们需要新型的抗真菌药物靶标。真菌细胞壁成分是抗真菌治疗的有希望的靶标,因为它们对于真菌是必不可少的,而人类则不存在。糖半乳糖呋喃糖(Galf)是半乳糖的5元环形式,存在于许多真菌的细胞壁中,但并非如此在哺乳动物中。我使用分子生物学和显微镜技术来表征模型物种构巢曲霉中的Galf生物合成酶。我研究了三种催化Galf生物合成中连续步骤的酶:UgmA,UgtA和UgeA。 UDP-吡喃半乳糖突变酶(UgmA)从细胞质中的UDP吡喃半乳糖(UDP-Galp)中产生UDP-半呋喃糖(UDP-Galf)。 UDP-Gal f转运蛋白(UgtA)将UDP-Galf转运到膜结合的细胞器中,以掺入细胞壁隔室。在UgmA的上游,UDP-葡萄糖/半乳糖差向异构酶(UgeA)将UDP-葡萄糖互变为UDP-Galp(UgmA底物)。 UgmA和UgtA都没有人类对应物。 UgeA在从细菌到人类的许多生物中都存在的Leloir半乳糖代谢途径中; UgeA,UgmA和UgtA都不对构巢曲霉的生存力至关重要,但删除其中的任何一个都会大大降低菌落的生长和孢子形成(图i )。定量野生型和Galf缺陷菌株(ugeAΔ,ugmAΔ和ugtAΔ)的菌落生长,细胞形态,孢子形成和萌发以及壁结构。这些蛋白质的丰度是使用alcA启动子调节的。 Galf含量通过在Galf缺陷菌株中的免疫定位来评估,表明这些菌株缺乏免疫可检测的Galf。基因产物用荧光蛋白标签定位; UgmA和UgeA都是胞质的,而UgtA是高尔基体定位的。使用透射电子显微镜和原子力显微镜对壁表面成像并强制探测。总体而言,Galf缺失菌株具有异常的壁成熟度和不良的固结表面。我们的结果表明,Galf对于曲霉菌细胞壁的丰富芽孢形成,野生型生长和完全成熟是必需的;在临床使用中评估了Galf缺失菌株对抗真菌剂的敏感性。他们对卡泊芬净和两性霉素B分别分别针对细胞壁合成和细胞膜化学的敏感性更高。因此,抗Galf药物(一旦创建)可能与现有的抗真菌药物联合使用。总之,Galf生物合成途径似乎有望成为一种抗真菌药物的开发目标。

著录项

  • 作者单位

    The University of Saskatchewan (Canada).;

  • 授予单位 The University of Saskatchewan (Canada).;
  • 学科 Biology Molecular.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号