首页> 外文学位 >Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage.
【24h】

Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage.

机译:光伏硅的机械性能与晶圆断裂的关系。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer.;This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 µm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs).;To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent the surface/edge micro-cracks (i.e. sources of crack initiation). The low load (<10mN) nanoindentations using Hysitron Triboindenter ® have been applied to estimate the zone of crack-propagation related plastic deformation and amorphization around the radial or the lateral cracks. The gradual reduction in hardness due to local stress field and phase change around the crack has been established using electron back scattered diffraction (EBSD), atomic force microscopy (AFM) and Raman spectroscopy, respectively, at nano- and micro-scale. The load (P) vs. displacement (h) curves depict characteristic phase transformation events (eg. elbow or pop-out) depending on the sign of residual stress in the silicon lattice. The formation of Si-XII/III phases (elastic phases) in large volumes during indentation of compressed Si lattice have been discussed as an option to eliminate the edge micro-cracks formed during wafer sawing by ductile flow.;The stress gradient at an interface, which can be a grain-boundary (GB), twin or a interface between silicon and precipitate, has been evaluated for crack path modification. An direct-silicon-bonded (DSB) based ideal [110]/[100] interface has been examined to study the effect of crystallographic orientation variation across a planar silicon 2D boundary. Using constant source diffusion/annealing process, Fe and Cu impurities have been incorporated in model [110]/[100]GB to provide equivalence to a real decorated multi-crystalline grain boundary. We found that Fe precipitates harden the undecorated GB structure, whereas Cu precipitates introduce dislocation-induced plasticity to soften it. Aluminum Schottky diodes have been evaporated on the DSB samples to sensitively detect the instantaneous current response from the phase-transformed Si under nanoindenter tip. The impact of metallic impurity and their precipitates on characteristic phase transformations (i.e. pop-in or pop-out) demonstrate that scattered distribution of large Cu-precipitates (upto 50 nm) compresses Si-lattice to facilitate Si-XII/III formations, i.e. high pressure ductile phases. Sweeping voltage measurements at a given load determine that Si lattice has to be stressed beyond 1 mN to complete the Si-I (semiconducting) to Si-II (ohmic) phase changes. Above 1 mN load DSB sample has a varistor-like behavior due to higher grain-boundary resistance from interfacial states.;The precipitate defect structure stimulated stresses at the bulk Si lattice or grain boundary modify the rate of elastic energy release at the crack-tip and associated phase change and hardness values in response to external loading. The systematic approach in this thesis elucidates that the interfacial surface area between Si-lattice and precipitate plays pivotal role in defining extent of stresses in the silicon, i.e. smaller precipitates in higher densities are severe than few larger volume precipitates. The finding of high-pressure ductile phase formation during loading of compressed silicon structure has been suggested to PV industry as a prospective candidate for reducing the wafer breakage and allowing larger handling stresses.
机译:本文着眼于与光伏硅“晶圆断裂”的关键问题相关的光伏(PV)硅中应力修正裂纹扩展的基本理解。对于薄的PV Si晶片中的相应断裂路径,已经评估了传播裂纹与杂质/缺陷/残余应力之间的相互作用。为了研究硅中的脆性断裂机理,已通过使用刚性的Berkovich纳米压头(半径&ap; 50 nm)对金刚石立方硅晶格进行局部应力,评估了由在扩展的裂纹尖端释放的弹性能引起的相变。然后,独特的压力诱导相变和硬度变化与沉淀物(O,Cu,Fe等)的分布以及晶片中的局部应力有关。;该研究首次证明了“延性断裂”几乎是圆形的裂纹路径,明显偏离了其在能量上有利的晶体学[110](111)系统。从以比正常生长速度更快的速度生长的切克劳斯基(CZ)锭上将这些大直径(约200毫米)的Si晶片切成小于180 µm的厚度。晶片核中以空位(vSi)驱动的氧以增强的热梯度沉积会产生较大的局部应力(最高100 MPa),我们使用拉曼光谱分析对其进行了评估。晶片核心中的其他micro-FTIR映射和微观蚀刻坑测量已将观察到的裂纹路径偏差与氧析出物(OPs)的同心环状分布相关联。要复制这些“真实世界”的破损情况并提供为了更好地了解裂纹扩展,本研究开发了几种新的创新工具/设备/方法。硅晶格的局部应力,相变和承载能力的精确定量分析已在使用微压痕来表示表面/边缘微裂纹(即裂纹产生源)产生的受控微裂纹附近进行了)。使用Hysitron Triboindenter®的低载荷(<10mN)纳米压痕已被用于估计与径向或横向裂纹周围的裂纹扩展相关的塑性变形和非晶化的区域。分别使用纳米级和微米级电子反向散射衍射(EBSD),原子力显微镜(AFM)和拉曼光谱确定了由于局部应力场和裂纹周围的相变而导致的硬度逐渐降低。载荷(P)与位移(h)曲线描绘了取决于硅晶格中残余应力的符号的特征性相变事件(例如,弯头或弹出)。已经讨论了在压缩的Si晶格压痕过程中大量形成Si-XII / III相(弹性相)的方法,以消除通过延性流在晶片锯切过程中形成的边缘微裂纹。可以是晶界(GB),孪晶或硅与沉淀物之间的界面的,已进行了裂纹路径改性的评估。已经研究了基于直接硅键合(DSB)的理想[110] / [100]界面,以研究晶体取向变化在平面硅2D边界上的影响。使用恒定的源扩散/退火工艺,已在模型[110] / [100] GB中掺入了铁和铜杂质,以提供与实际装饰的多晶晶界等效的功能。我们发现,Fe沉淀硬化未修饰的GB结构,而Cu沉淀引入位错诱导的可塑性使其软化。铝肖特基二极管已经在DSB样品上蒸发,以灵敏地检测到纳米压头尖端下相变Si的瞬时电流响应。金属杂质及其沉淀物对特征相变(即弹出或弹出)的影响表明,大的铜沉淀物(高达50 nm)的分散分布压缩了Si晶格以促进Si-XII / III的形成,即高压韧性相。在给定负载下的扫描电压测量结果确定,必须使Si晶格受力超过1 mN,才能完成Si-I(半导体)至Si-II(欧姆)相变。在1 mN以上的载荷下,由于界面状态下较高的晶界电阻,DSB样品具有压敏电阻行为;析出缺陷结构在块状Si晶格或晶界处激发的应力会改变裂纹尖端的弹性能释放速率以及响应于外部载荷的相关相变和硬度值。本文的系统方法阐明了硅晶格与沉淀物之间的界面表面积在确定硅中应力的范围方面起着关键作用。,即密度较高的较小沉淀物比少数较大体积的沉淀物严重。 PV工业已建议在压缩硅结构加载期间发现高压韧性相,以此作为减少晶片破裂并允许更大处理应力的潜在候选方法。

著录项

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号