首页> 外文学位 >Interactions of electromagnetic waves with micro/nano particles: Manipulation and characterization.
【24h】

Interactions of electromagnetic waves with micro/nano particles: Manipulation and characterization.

机译:电磁波与微米/纳米粒子的相互作用:操纵和表征。

获取原文
获取原文并翻译 | 示例

摘要

Interaction of electromagnetic waves with small particles has been extensively investigated for detection, characterization and manipulation of objects in the micro/nanoscale. Several advanced techniques based on light-particle interaction have been developed and widely used in biomedical research, e.g., trapping of micron-size particles by light and plasmonic photothermal therapy with gold nanoparticles.;In this thesis we have developed two new methods of optical trapping by use of planar metal nano-optic structures. One is based on a metallic nanoslit array structure that is designed to allow refractive transmission of light with proper phase retardation at each slit, shaping an incident light into a sharp focus. The metallic nanoslit array lenses were integrated with a fluidic channel cell, and optical trapping of polystyrene microspheres was demonstrated. Another optical trapping method developed in this thesis utilizes the diffraction phenomenon occurring at a thin-film metal edge. Interference of boundary diffraction and free-space transmission waves is found to generate highly localized distribution of light around the metal edge. The electromagnetic field distribution around the edge was calculated by finite-difference-time-domain method, and the 2D trapping forces were estimated by applying a ray optics model. Trapping of a 2-im-diameter polystyrene bead was demonstrated, and the trapping force (escape force) is measured to be about 2.2 pN at incident power of 32 mW. Selective trapping and sorting of microspheres by this metal edge trapping is also demonstrated.;Use of metal nanoparticle colloidal solutions in conjunction with radiofrequency (RF) waves has recently drawn attention as a possible means to deposit heat in a local confined space for cancer therapy. We investigated the heating effect of gold nanoparticle (Au-NP) colloids in the presence of RF electromagnetic wave, and explored the possible role of Au-NPs in RF energy absorption. Contrary to the previously-taken assumption in this field, we found that Au nanoparticles do not contribute to RF energy absorption. Au-NPs were physically separated from the colloidal solutions via centrifugation, and RF heating and electrical conductivity measurements were performed. The results show that the dominant mechanism of RF-radiation-to-thermal conversion is due to the Joule heating via ionic conduction in the electrolyte solutions.
机译:电磁波与小颗粒的相互作用已被广泛研究,以检测,表征和操纵微米/纳米尺度的物体。已经开发出了几种基于光-粒子相互作用的先进技术,并将其广泛用于生物医学研究中,例如,通过光捕获和使用金纳米粒子的等离子体光热疗法捕获微米级的粒子。在本文中,我们开发了两种新的光捕获方法通过使用平面金属纳米光学结构。一种基于金属纳米缝隙阵列结构,该结构设计为允许在每个缝隙处具有适当相位延迟的光的折射透射,从而将入射光整形为清晰的焦点。金属纳米狭缝阵列透镜与流体通道单元集成,并证明了聚苯乙烯微球的光学捕获。本文提出的另一种光阱方法是利用在薄膜金属边缘发生的衍射现象。发现边界衍射和自由空间透射波的干扰会在金属边缘周围产生高度局部的光分布。利用时域有限差分法计算边缘周围的电磁场分布,并通过射线光学模型估算二维俘获力。证实了直径为2毫米的聚苯乙烯珠的诱捕,在32 mW的入射功率下测得的诱集力(逃逸力)约为2.2 pN。还证明了通过这种金属边缘捕集对微球的选择性捕集和分选。最近,将金属纳米粒子胶体溶液与射频(RF)波结合使用已作为一种将热量沉积在局部狭窄空间中以进行癌症治疗的可能方式引起了人们的注意。我们研究了金纳米粒子(Au-NP)胶体在RF电磁波存在下的加热效果,并探讨了Au-NPs在RF能量吸收中的可能作用。与该领域先前采用的假设相反,我们发现Au纳米颗粒不会促进RF能量吸收。通过离心将Au-NP从胶体溶液中物理分离,并进行RF加热和电导率测量。结果表明,RF辐射向热转化的主要机理是由于电解质溶液中的离子传导引起的焦耳热。

著录项

  • 作者

    Li, Dongxiao.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Engineering Biomedical.;Physics Optics.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号