首页> 外文学位 >Nonlinear optical process enhancement by artificial resonant structures.
【24h】

Nonlinear optical process enhancement by artificial resonant structures.

机译:通过人工共振结构增强非线性光学过程。

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear optical materials and devices respond to the intensity of light. This behavior is what allows light to control light, resulting in the ability to implement devices that perform switching, logic, and wavelength conversion operations, which are essential for the development of next-generation all-optical systems. The major problem with conventional nonlinear optical materials is that there is an inherent trade-off between nonlinear sensitivity and response time, so that nonresonant materials have ultrafast response but are weakly nonlinear, whereas resonant materials can have large nonlinear response but with slower response time and typically suffer from increased absorption. While the search for new natural materials with a large optical nonlinearity continues, the use of artificial materials and structures has been considered as a means of enhancing the optical nonlinearity. The practical advantage of using engineered resonance effects is in the more efficient use of the nonlinearity by maximizing the nonlinear effect within the bandwidth of interest. Multiresonator artificial systems, such as photonic crystals (PCs) with defect cavities (also referred to as coupled resonator optical waveguides (CROWs) or slow-wave structures (SWSs)), offer additional degrees of freedom over single resonators in the design for a specific nonlinear response where the nonlinear sensitivity, bandwidth, and loss can be controlled with some independence.; In this thesis, we propose a novel approach to the design of nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. We demonstrate its feasibility in the design of low intensity nonlinear phase shifters based on optical Kerr effect, where a prototype discrete-time filter of a flat-topped passband with steep linear in-band phase is preferred. Several approaches to synthesizing the prototype filter are presented, including an empirical approach based on bandwidth manipulation, a direct filter synthesis approach adapted from microwave filter design, and a discrete-time signal processing approach incorporating with a precompensation strategy. We further propose a self-consistent methodology to handle multivalued transmissions that can occur in optical resonant architectures with increasing incident intensity, providing a straightforward and efficient way to explore bistable behaviors in multiresonator systems. Four optical architectures are examined for the study of the nonlinear phase shift, optical bistability or multistability, two-photon absorption and optical pulse propagation, including thin-film photonic bandgap coupled-defects, direct-coupled ring resonators, cascaded ring resonators, and ring-resonator based Mach-Zehnder interferometer lattice. The scaling rule of the nonlinear sensitivity on the basis of linear filter parameters is evaluated; thus, nonlinear behavior can be estimated directly from linear filter responses.
机译:非线性光学材料和设备响应光的强度。这种行为使光能够控制光,从而能够实现执行开关,逻辑和波长转换操作的设备,这对于开发下一代全光学系统至关重要。常规非线性光学材料的主要问题是非线性灵敏度和响应时间之间存在固有的权衡,因此非谐振材料具有超快响应,但非线性较弱,而谐振材料则具有较大的非线性响应,但响应时间和响应时间较慢。通常吸收增加。在继续寻找具有大光学非线性的新型天然材料的同时,人工材料和结构的使用已被视为增强光学非线性的一种手段。使用工程共振效应的实际优势在于,通过最大化感兴趣带宽内的非线性效应,可以更有效地利用非线性。多谐振器人工系统,例如具有缺陷腔的光子晶体(PC)(也称为耦合谐振器光波导(CROW)或慢波结构(SWS)),在特定设计中比单个谐振器具有更多的自由度非线性响应,其中可以独立地控制非线性灵敏度,带宽和损耗。在本文中,我们提出了一种新的非线性光学器件设计方法,即在弱摄动极限下将所需的非线性响应视为离散时间滤波器。我们证明了在基于光学克尔效应的低强度非线性移相器设计中的可行性,其中首选具有陡峭线性带内相位的平顶通带的离散时间滤波器原型。提出了几种用于合成原型滤波器的方法,包括基于带宽操作的经验方法,适用于微波滤波器设计的直接滤波器合成方法以及结合了预补偿策略的离散时间信号处理方法。我们进一步提出了一种自洽的方法,以处理入射光强度不断增加的光学谐振架构中可能发生的多值传输,为探索多谐振器系统中的双稳态行为提供了一种直接有效的方法。考察了四种光学体系结构,以研究非线性相移,光学双稳态或多稳定性,双光子吸收和光学脉冲传播,包括薄膜光子带隙耦合缺陷,直接耦合环形谐振器,级联环形谐振器和环形基于谐振器的Mach-Zehnder干涉仪晶格。评估了基于线性滤波器参数的非线性灵敏度的缩放规则;因此,可以从线性滤波器响应直接估计非线性行为。

著录项

  • 作者

    Chen, Yan.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号