首页> 外文学位 >Genomic regulation of angiogenesis in mouse lung.
【24h】

Genomic regulation of angiogenesis in mouse lung.

机译:小鼠肺血管生成的基因组调控。

获取原文
获取原文并翻译 | 示例

摘要

A better understanding of the regulation of factors that promote and inhibit angiogenesis may ultimately enable improved therapeutic control of this important process. In this study we utilize a unique mouse model that allows study of the signalings of both processes in the lung within individual animals. The lung is unique in that angiogenesis takes place in an ischemic but hyperoxic environment and the new vasculature is from systemic (bronchial or intercostal), not the pulmonary vasculature. Such an anatomic separation allows the independent investigation of the mediators of ischemic tissues from the source of neovascularization. Obstruction of the left pulmonary artery following lateral thoracotomy in the mouse consistently induced the formation of a new vasculature, which developed from the visceral pleura and entered the upper left lung directly within 5–6 days after ligation. No new vessels developed to the lower left lung, despite the initial ischemic stimulus being identical to that in the upper lung. Pulmonary ischemia is essential since sham-operated thoracotomy does not result in lung angiogenesis. Using this unique model of angiogenesis, we have determined the temporal pattern of differential gene expression from two independent regions of the same lung: one where angiogenesis is induced, and the other where angiogenesis does not occur. Microarray analysis, quantitative real-time RT-PCR and enzyme-linked immunosorbent assay were used to compare the signals from these two lung regions in the first 14 days following ischemia. The findings reveal important roles of ELR+ CXC chemokines as proangiogenic signals. Genes involved in tissue remodeling, inflammation, and injury were also upregulated in the proangiogenic upper lung. Results also confirm that lung ischemia, rather than hypoxia, is the essential trigger for angiogenesis. Additionally, within the same animal model, the altered gene profiles of expression in the wounded thoracic wall overlying lung ischemia revealed the different signaling pattern from the neovascularization in normal wound healing. These observations suggest cross communication of the thoracic wall undergoing wound repair with the ischemic lung, providing important new information involved in promoting new blood vessel formation to the lung.
机译:对促进和抑制血管生成的因子的调控的更好理解可能最终可以改善对该重要过程的治疗控制。在这项研究中,我们利用一种独特的小鼠模型,该模型可以研究单个动物内肺部两个过程的信号传导。肺部的独特之处在于血管生成发生在缺血但高氧的环境中,新的脉管系统来自全身性(支气管或肋间),而不是肺部血管系统。这种解剖分离允许从新血管形成的来源独立研究缺血组织的介体。在小鼠的侧面开胸手术后,左肺动脉阻塞持续诱导新的脉管系统的形成,该系统从内脏胸膜形成并在结扎后5-6天内直接进入左上肺。尽管最初的缺血刺激与上肺相同,但左下肺没有新血管发育。肺缺血是必不可少的,因为假手术开胸手术不会导致肺血管生成。使用这种独特的血管生成模型,我们从同一肺的两个独立区域确定了差异基因表达的时间模式:一个区域诱导血管生成,另一个区域不发生血管生成。使用微阵列分析,定量实时RT-PCR和酶联免疫吸附测定法比较缺血后头14天来自这两个肺区域的信号。这些发现揭示了ELR + CXC趋化因子作为促血管生成信号的重要作用。在促血管生成的上肺中,与组织重塑,炎症和损伤有关的基因也被上调。结果还证实,肺缺血而非缺氧是血管生成的重要触发因素。另外,在同一动物模型中,覆盖在肺缺血的胸廓壁上表达的基因表达谱改变揭示了正常伤口愈合中新血管形成的不同信号传导模式。这些观察结果表明,正在经历伤口修复的胸壁与缺血性肺的交叉通讯,为促进肺部新血管的形成提供了重要的新信息。

著录项

  • 作者

    Srisuma, Sorachai.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Animal Physiology.; Health Sciences Public Health.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 355 p.
  • 总页数 355
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学 ; 预防医学、卫生学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号