首页> 外文学位 >Dissecting kinesin motor function with small-molecule inhibitors.
【24h】

Dissecting kinesin motor function with small-molecule inhibitors.

机译:用小分子抑制剂剖析驱动蛋白的运动功能。

获取原文
获取原文并翻译 | 示例

摘要

Kinesin motors comprise a diverse number of related proteins required for intracellular transport and cell division. Dissecting the role of kinesin motors is limited by the specific reagents, antibodies and RNAi, currently used to disrupt protein function. Specific small-molecule inhibitors of kinesin motor proteins can be useful mechanistic and biochemical probes to dissect motor function in complex biological systems. The first example of such a reagent, monastrol, is a cell-permeable drug that specifically blocks the motor activity of the mitotic kinesin Eg5, causing mitotic arrest and spindle collapse in vivo. In this study, we set out to investigate the mechanism by which monastrol inhibits the motor activity of the Eg5 mitotic kinesin using a combination of biochemistry and X-ray crystallography. Whereas previous kinesin inhibitors compete with ATP (Kapoor & Mitchison, 1999) or microtubule binding (Sakowicz et al., 1998; Hopkins et al, 2000), monastrol binds to the motor domain of Eg5, blocking the ATP hydrolysis cycle by a non-competitive mechanism. We solved the X-ray crystal structure of Eg5 in a ternary complex with monastrol and ADP, revealing a novel allosteric binding pocket that is targeted by monastrol. The crystal structure is consistent with the structure-activity relationship (SAR) of monastrol and mutational analysis of the drug binding site. The Eg5 motor domain adopts a neck-linker docked conformation that was previously associated with a rigid microtubule-bound state. Surprisingly, microtubule co-sedimentation experiments shows that Eg5 binds microtubules poorly in the presence of monastrol, indicating that spindle collapse may be a direct result of microtubule release in vivo. To identify novel and specific reagents to study kinesin function in mitosis, we performed a pure protein, high-throughput screen for inhibitors of microtubule-stimulated ATP hydrolysis by the motor domains of Eg5, CenpE, and MKLP1. We identified a novel class of specific Eg5 inhibitors that are more potent than monastrol and inhibit Eg5 by a similar mechanism.; Our work provides a biochemical and structural basis for the specific interaction of monastrol with the Eg5 motor domain. In addition, our results suggest that monastrol-induced spindle collapse is due to microtubule release by Eg5.
机译:驱动蛋白马达包含细胞内运输和细胞分裂所需的多种相关蛋白质。剖析驱动蛋白运动的作用受到目前用于破坏蛋白质功能的特定试剂,抗体和RNAi的限制。驱动蛋白运动蛋白的特定小分子抑制剂可能是有用的机制和生化探针,用于分析复杂生物系统中的运动功能。这种试剂的第一个实例莫纳斯特罗尔(monastrol)是一种细胞可渗透的药物,它特异性阻断有丝分裂驱动蛋白Eg5的运动活性,从而在体内引起有丝分裂阻滞和纺锤体崩溃。在这项研究中,我们着手研究通过生物化学和X射线晶体学相结合的方式,莫纳斯特罗尔抑制Eg5有丝分裂驱动蛋白的运动活性的机制。以前的驱动蛋白抑制剂与ATP(Kapoor&Mitchison,1999)或微管结合(Sakowicz等,1998; Hopkins等,2000)竞争,而莫那那特罗与Eg5的运动域结合,通过非竞争机制。我们解决了与Monastrol和ADP的三元复合物中Eg5的X射线晶体结构,揭示了Monastrol靶向的新型变构结合口袋。晶体结构与药物结合位点的单体和突变分析的构效关系(SAR)一致。 Eg5运动域采用以前与刚性微管结合状态相关联的颈部连接物对接构象。出乎意料的是,微管共沉淀实验表明,在monastrol的存在下,Eg5与微管的结合较弱,这表明纺锤体塌陷可能是体内微管释放的直接结果。为了鉴定新的特异性试剂来研究有丝分裂中驱动蛋白的功能,我们对Eg5,CenpE和MKLP1的运动域对微管刺激的ATP水解抑制剂进行了纯蛋白,高通量筛选。我们确定了一类新型的特异性Eg5抑制剂,其比莫纳斯特罗尔更有效,并通过类似的机制抑制Eg5。我们的工作为monastrol与Eg5运动域的特定相互作用提供了生化和结构基础。此外,我们的研究结果表明,莫纳斯特罗尔引起的纺锤体塌陷是由于Eg5释放微管所致。

著录项

  • 作者

    Maliga, Zoltan.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biophysics General.; Chemistry Biochemistry.; Chemistry Pharmaceutical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生物化学;药物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号