首页> 外文学位 >Identification of frequency domain and time domain aeroelastic parameters for flutter analysis of flexible structures.
【24h】

Identification of frequency domain and time domain aeroelastic parameters for flutter analysis of flexible structures.

机译:识别频域和时域的气动弹性参数,以进行柔性结构的颤振分析。

获取原文
获取原文并翻译 | 示例

摘要

Flutter analysis of structures is usually done in frequency domain. Alternately, time-domain methods have been suggested. For frequency-domain flutter analysis, flutter derivatives are used that can be identified from section model testing in the wind tunnel. In time-domain analysis, the frequency-dependent aerodynamic self-excited forces expressed in flutter derivatives acting on the structure can be approximated in the Laplace domain by Rational functions.; The art of efficient extraction of these aeroelastic parameters requires an elastic suspension system to capture coupled displacement and aerodynamic force time histories from wind tunnel testing of section models. A novel three-degree-of-freedom (DOF) suspension system has been developed for the wind-tunnel section model study of wind-excited vibrations of flexible structures.; The extraction of flutter derivatives becomes more challenging when the number of DOF of section model increases from two to three. Since the work in the field of identifying all eighteen flutter derivatives has been limited, it has motivated the development of a new system identification method (Iterative least squares method or ILS method) to efficiently extract the flutter derivatives using a section model suspended by the three-DOF elastic suspension system. All eighteen flutter derivatives for a streamlined bridge deck and an airfoil section model were identified by using ILS approach. Flutter derivatives related to the lateral DOF were emphasized.; For time-domain flutter analysis, Rational function approximation (RFA) approach involves approximation of the experimentally obtained flutter derivatives through 'multilevel linear and nonlinear optimization' procedure. This motivated the formulation of a system identification technique (Experimental extraction of Rational function coefficients or E2RFC) to directly extract the Rational function coefficients from wind tunnel testing. The current formulation requires testing of the model at fewer numbers of velocities than in the flutter-derivative formulation leading to significant reduction in time and resources associated with extraction of flutter derivatives and eventual Rational function approximation. Successful numerical simulation using E2RFC formulation with two lag terms was performed proving the robustness of the technique. Experimental extraction of Rational function coefficients associated with one lag term formulation was made for a streamlined bridge deck section model.
机译:结构的颤振分析通常在频域中进行。或者,提出了时域方法。对于频域颤动分析,使用了颤动导数,可以从风洞中的截面模型测试中识别出颤动导数。在时域分析中,可以通过有理函数在拉普拉斯域中近似表示作用在结构上的颤动导数中表示的频率相关的空气动力自激力。有效提取这些空气弹性参数的技术需要一种弹性悬架系统,以从截面模型的风洞测试中捕获耦合的位移和空气动力时间历史。已经开发了一种新颖的三自由度(DOF)悬架系统,用于研究柔性结构的风激发振动的风洞截面模型。当截面模型的自由度数从2增加到3时,颤振导数的提取变得更具挑战性。由于在识别所有18种颤动导数领域的工作受到限制,因此它促使开发一种新的系统识别方法(迭代最小二乘法或ILS方法),以使用由这三个颤振所悬挂的截面模型有效地提取颤动导数。 -自由度弹性悬挂系统。使用ILS方法识别了流线型桥面和翼型截面模型的所有18种颤动导数。强调了与横向自由度相关的颤振导数。对于时域颤振分析,有理函数逼近(RFA)方法涉及通过“多级线性和非线性优化”过程对实验获得的颤振导数进行逼近。这激发了系统识别技术(有理函数系数或E2RFC的实验性提取)的制定,以直接从风洞测试中提取有理函数系数。当前的公式要求以比颤振导数公式更少的速度测试模型,从而导致与颤振导数的提取和最终的有理函数逼近相关的时间和资源大大减少。使用带有两个滞后项的E2RFC公式成功进行了数值模拟,证明了该技术的鲁棒性。对流线型桥面板截面模型进行了与一个滞后项公式相关的有理函数系数的实验提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号