首页> 外文学位 >Heteroepitaxy of gallium-selenide on silicon(100) and (111): New silicon-compatible semiconductor thin films for nano structure formation.
【24h】

Heteroepitaxy of gallium-selenide on silicon(100) and (111): New silicon-compatible semiconductor thin films for nano structure formation.

机译:硅(100)和(111)上硒化镓的异质外延:用于形成纳米结构的新型硅相容半导体薄膜。

获取原文
获取原文并翻译 | 示例

摘要

Silicon has been the backbone of modern electronics for decades; however, it is not readily compatible with some new types of electronics, such as optoelectronics or spintronics. We aim at overcoming this limitation by combining gallium-selenide (GaxSey) materials with silicon (Si) through heteroepitaxial growth. GaxSey materials are compatible with Si, and are optically and potentially magnetically active semiconductors. Their unusual crystal structures, layered GaSe and defected zinc-blende Ga2Se 3, may be exploited for unprecedented nanostructure formations.; This dissertation demonstrates that GaxSey thin films can be grown epitaxially on Si(100) and (111) substrates into various nanostructure forms, namely 0-dimensional (0-D) "dots", 1-D "wires", 2-D "layers", and 3-D "bulk". We have found that hexagonal layered GaSe is formed on Si(111) with or without arsenic termination (Si(111):As), and defected zinc-blende Ga2Se3 is formed on arsenic terminated Si(100) (Si(100):As). The surfaces of GaSe/Si(111) and Ga 2Se3/Si(100):As are covered by triangle nanodots and oriented nanowire structures, respectively. We propose that different symmetry and bonding of the substrate surfaces induces different configurations of vacancies, resulting in the distinct surface nanostructures. We have achieved a thorough understanding for nanostructure formations of GaxSey by considering vacancies and surfaces as additional "elements" for stabilizing the structures. In contrast to layered GaSe/Si(111), we have found that Ga2Se3-GaAs alloy is formed in a zinc-blende phase at the interface of GaSe/Si(111):As. This signifies the bonding configuration of each element is responsible for determining the local composition; however, the atomic arrangement defined by the substrate symmetry plays a more decisive role in selecting GaxSey crystal structure for Ga xSey/Si heteroepitaxy. Through this study, we propose a generalized concept describing the stable structures of the selenide materials, applicable in both nano- and macro-scopic scales.
机译:几十年来,硅一直是现代电子的支柱。但是,它不容易与某些新型电子设备兼容,例如光电或自旋电子设备。我们旨在通过异质外延生长将硒化镓(GaxSey)材料与硅(Si)结合起来,以克服这一限制。 GaxSey材料与Si兼容,并且是光学和潜在磁激活的半导体。它们不寻常的晶体结构,即分层的GaSe和缺陷的掺锌的Ga2Se 3,可用于形成前所未有的纳米结构。本文证明了GaxSey薄膜可以在Si(100)和(111)衬底上外延生长成各种纳米结构形式,即0维(0-D)“点”,1-D“线”,2-D“图层”和3D“批量”。我们发现在有或没有砷封端的Si(111)上形成六方层状GaSe(Si(111):As),在砷封端的Si(100)(Si(100):As )。 GaSe / Si(111)和Ga 2Se3 / Si(100):As的表面分别被三角形纳米点和定向纳米线结构覆盖。我们提出,衬底表面的不同对称性和键合会引起空位的不同配置,从而导致不同的表面纳米结构。通过将空位和表面视为稳定结构的附加“元素”,我们已经对GaxSey纳米结构的形成有了透彻的了解。与分层的GaSe / Si(111)相比,我们发现Ga2Se3-GaAs合金在GaSe / Si(111):As的界面上以闪锌矿状形成。这表示每个元素的键合配置负责确定局部组成;然而,由衬底对称性定义的原子排列在选择GaxSey / Si异质外延的GaxSey晶体结构中起决定性作用。通过这项研究,我们提出了一个广义的概念,描述了硒化物材料的稳定结构,适用于纳米和宏观尺度。

著录项

  • 作者

    Ohta, Taisuke.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号