首页> 外文学位 >Forward and inverse modeling of biological tissue with microstructure: An application to bone mechanics.
【24h】

Forward and inverse modeling of biological tissue with microstructure: An application to bone mechanics.

机译:具有微观结构的生物组织的正向和逆向建模:在骨骼力学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Tissue characterization is a broad field that encompasses forward modeling and inverse problems for microstructured biological materials. It aims at finding and quantifying the complex relations between observable and measurable properties at the macroscale, constituents' properties at the microscale, and morphological parameters of clinical relevance. Knowledge of these relationships is crucial for clinical evaluation and treatment monitoring.;Bone quality represents a summary of all characteristics of bone that affect its ability to resist fracture. Measurements of bone mineral density (BMD) are the standard to address osteoporosis or the ability of bone to withstand fracture. Although these measurements have strong correlations with bone mechanical performance and fracture risk, they do not completely explain fracture incidence. Some patients diagnosed with osteoporotic fracture presented the same or even slightly greater BMD values than normal patients. Besides, it has been reported that over half of those who experience fragility fractures do not have BMD levels below the threshold used to identify osteoporosis. As a consequence, there has been an increased interest in other aspects of bone such as its size, shape, and material properties to explain bone fracture. Quantitative ultrasound (QUS) and electric spectroscopy (ES) are relatively cheap and safe techniques being studied for their potential in noninvasive assessment of bone quality. However, most of the studies in the literature are based on correlation analysis between wave parameters and BMD measurements, mechanical, or morphological properties without a mathematical model behind it. The complexity and fine scale of the biological tissue micro-architecture creates a major technical difficulty for prediction of structural and morphological parameters of medical relevance from either QUS or ES measurements. The length of the applied waves is much larger than the variations of the structure, so that only effective or homogenized response of the structure is present in ultrasound or impedance electric data. The goal of this dissertation is to study analytical relations between measured effective or homogenized response and microstructural and morphological parameters. As an application of the results, we derive exact interrelations between dielectric and viscoelastic properties. The proposed approach does not assume any a priori geometrical or idealized microstructure. Applications to bone microstructure will be presented. The obtained results can provide an insight for improvement in existing tissue characterization techniques.
机译:组织表征是一个广阔的领域,涵盖了微结构生物材料的正向建模和反问题。它旨在发现和量化宏观尺度上可观测和可测量属性,微观尺度上成分的属性以及与临床相关的形态学参数之间的复杂关系。这些关系的知识对于临床评估和治疗监测至关重要。骨骼质量代表了影响其抗骨折能力的所有骨骼特征的总结。骨矿物质密度(BMD)的测量是解决骨质疏松症或骨骼承受骨折的能力的标准。尽管这些测量值与骨骼力学性能和骨折风险有很强的相关性,但它们不能完全解释骨折的发生率。一些被诊断为骨质疏松性骨折的患者的BMD值与正常患者相同或略高。此外,据报道,超过一半的易碎性骨折患者的骨密度(BMD)水平未低于用于识别骨质疏松症的阈值。结果,人们对骨骼的其他方面(例如其大小,形状和材料特性)的兴趣日益浓厚,以解释骨折的原因。定量超声(QUS)和电子光谱(ES)是相对便宜和安全的技术,它们在非侵入性评估骨质量方面具有潜力。但是,文献中的大多数研究都是基于波参数与BMD测量,机械或形态特性之间的相关性分析,而没有背后的数学模型。生物组织微架构的复杂性和精细规模为从QUS或ES测量预测医学相关性的结构和形态参数创造了一项主要的技术难度。所施加的波的长度比结构的变化大得多,因此在超声或阻抗电数据中仅存在结构的有效或均质响应。本文的目的是研究测得的有效或均质响应与微观结构和形态参数之间的分析关系。作为结果的应用,我们得出介电性能和粘弹性性能之间的精确相互关系。所提出的方法不假定任何先验的几何或理想的微观结构。将介绍在骨微结构中的应用。获得的结果可以为改进现有组织表征技术提供见识。

著录项

  • 作者

    Bonifasi-Lista, Carlos.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Applied Mechanics.;Engineering Biomedical.;Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号