首页> 外文学位 >Synthesis and Applications of Large Area Graphene-Based Electrode Systems.
【24h】

Synthesis and Applications of Large Area Graphene-Based Electrode Systems.

机译:大面积石墨烯基电极系统的合成与应用。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a single sheet of carbon atoms with outstanding electrical and physical properties and being exploited for applications in electronics, sensors, fuel cells, photovoltaics and energy storage. However, practical designs of graphene-based electrode systems and related experimental implementations are required to realize their widespread applications in nano- to bioelectronics. In this dissertation, different graphene-based electrode systems having metallic and semiconducting properties are synthesized optimizing process conditions. Also realized is the potential of the fabricated electrode systems by applying them in practical applications such as sensor devices and fuel cells.;The zero bandgap of semimetal graphene still limits its application as an effective field-effect transistor device or a chemiresistor sensor operating at room temperature. It has been shown theoretically and experimentally that graphene nanoribbons (GNRs) or nanomeshes (GNMs) can attain a bandgap that is large enough for a transistor device, and hence would show high sensitivity to various gaseous species or biomolecules. Large-area mono- and bilayer graphene films are synthesized by a simple chemical vapor deposition (CVD) technique depending on the carbon precursors such as methane, acetylene and ethanol, and the results are compared using optical microscopy (OM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS). A simple reactive ion etching (RIE) combined with well-established nanosphere lithography is performed on the synthesized CVD-grown monolayer graphene platform to fabricate large area GNMs with specific dimension and periodicity. The fabricated GNMs chemiresistor sensor devices show excellent sensitivity towards NO2 and NH 3, significantly higher than their film counterparts. The GNM sensor devices exhibit sensitivities of about 4.32%/ppm (parts-per-million) in NO 2 and 0.71%/ppm in NH3 with estimated limit of detections of 15 ppb (parts-per billion) and 160 ppb, significantly lower than Occupational Safety and Health Administration (OSHA) permissible exposure limits of 5 ppm (NO2) and 50 ppm (NH3), respectively. The demonstrated studies on the sensing properties of graphene nanomesh would essentially lead further improvement of it's sensitivity and selectivity as a potential sensor material.;Furthermore, a three-dimensional (3D) carbon electrode in the form of vertically aligned carbon nanotubes (CNTs) on a graphene floor is applied as a supporting electrode for platinum (Pt) nanoflowers electrocatalysts in methanol oxidation as well as in nonenzymatic sensing of blood glucose. Experimental results demonstrate an enhanced efficiency of the 3D graphene-carbon nanotubes hybrid film, as catalyst support, for methanol oxidation with regard to electroactive surface area, forward anodic peak current density, onset oxidation potential, diffusion efficiency and the ratio of forward to backward anodic peak current density (If/Ib). Also, the developed nonenzymatic 3D carbon hybrid sensor responded linearly to the physiological glucose concentration ranging from 1 to 7 mM (R2 = 0.978) with a sensitivity of 11.06 muA mM-1cm-2.
机译:石墨烯是具有优异电和物理性能的单层碳原子,已被广泛用于电子,传感器,燃料电池,光伏和储能领域。然而,需要石墨烯基电极系统的实际设计和相关的实验实现,以实现其在纳米电子生物技术中的广泛应用。本文通过优化工艺条件,合成了具有金属和半导体特性的不同石墨烯基电极体系。通过在实际应用中将其应用于传感器设备和燃料电池等实际应用中,也实现了电极系统的潜力。半金属石墨烯的零带隙仍然限制了其作为有效场效应晶体管器件或在室内运行的化学电阻传感器的应用温度。从理论上和实验上已经表明,石墨烯纳米带(GNR)或纳米网(GNM)可以实现足够大的带隙以用于晶体管器件,因此对各种气态物种或生物分子表现出很高的敏感性。根据简单的化学气相沉积(CVD)技术,根据甲烷,乙炔和乙醇等碳前驱体合成大面积单层和双层石墨烯薄膜,并使用光学显微镜(OM),拉曼光谱,高分辨率透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)。在合成的CVD生长的单层石墨烯平台上进行简单反应离子刻蚀(RIE)与已建立的纳米球光刻技术相结合,以制造具有特定尺寸和周期性的大面积GNM。所制造的GNMs化学电阻传感器装置对NO2和NH 3表现出出色的灵敏度,远高于其薄膜同类产品。 GNM传感器设备在NO 2中的灵敏度约为4.32%/ ppm(百万分之一),在NH3中的灵敏度为0.71%/ ppm,估计检出限为15 ppb(十亿分之一)和160 ppb,远低于职业安全与健康管理局(OSHA)的允许暴露极限分别为5 ppm(NO2)和50 ppm(NH3)。对石墨烯纳米网的感测特性进行的已证明的研究将本质上导致其作为潜在传感器材料的灵敏度和选择性的进一步提高。此外,在垂直方向排列的碳纳米管(CNT)形式的三维(3D)碳电极石墨烯地板被用作甲醇氧化以及非酶感测血糖中铂(Pt)纳米花电催化剂的支撑电极。实验结果表明,作为3D石墨烯-碳纳米管杂化膜的催化剂载体,用于甲醇氧化的电活性表面积,正向阳极峰值电流密度,起始氧化电位,扩散效率和正向与反向阳极比率均得到提高峰值电流密度(If / Ib)。同样,开发的非酶3D碳杂化传感器对生理葡萄糖浓度范围为1至7 mM(R2 = 0.978)线性响应,灵敏度为11.06μAmM-1cm-2。

著录项

  • 作者

    Paul, Rajat Kanti.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Chemical.;Nanotechnology.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号