首页> 外文学位 >Fracture behavior of silica nanoparticle filled epoxy resin.
【24h】

Fracture behavior of silica nanoparticle filled epoxy resin.

机译:二氧化硅纳米颗粒填充环氧树脂的断裂行为。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM).;The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy.;The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles, matrix void growth, and matrix shear banding, which are credited for the increases in toughness for nanosilica-filled epoxy systems.;Epoxy containing mixtures of two different size distributions of silica particles (42 micrometer and 23 nm-170nm particles) was explored for possible multiplicative toughening effect and to further understand the particle-epoxy interactions and toughening mechanisms of bimodal particle size distribution systems. The fracture toughness was improved by approximately 30% compared to that of the epoxy containing only one particle size of silica particles. The toughness improvement from the interaction of particle debonding from large particles and plastic void growth from small particles was clearly observed. The improvement in toughness occurred when the volume fraction ratio of the large and small particles was more than 50:50 ratios. The increased toughness was found to be additive not multiplicative effect.
机译:本文涉及将二氧化硅纳米颗粒添加到轻度交联的环氧树脂模型中,并研究纳米二氧化硅含量和粒度对玻璃化转变温度(Tg),热膨胀系数(CTE),杨氏模量(E),屈服应力的影响以及断裂韧性。这项研究旨在了解二氧化硅纳米粒度,双峰粒度分布和二氧化硅含量对增韧行为的影响。使用扫描电子显微镜(SEM),透射电子显微镜(TEM)和透射光学显微镜(TOM)确定增韧机理。该方法可识别增韧机理并首先从单峰粒度体系建立增韧模型,然后扩展这些概念实验结果表明,添加纳米二氧化硅对Tg或环氧树脂的屈服应力没有显着影响,即屈服应力和Tg保持恒定不论纳米二氧化硅的粒径如何。不出所料,纳米二氧化硅的添加对CTE,模量和断裂韧性有重大影响。发现纳米二氧化硅填充的环氧树脂的CTE值随着纳米二氧化硅含量的增加而降低,这可以归因于纳米二氧化硅填料的低得多的CTE。有趣的是,CTE的降低显示出强烈的粒度依赖性。还发现,杨氏模量随着纳米二氧化硅的添加而显着改善,并且随着填料含量的增加而增加。但是,粒径对杨氏模量没有任何影响。最后,随着纳米二氧化硅的加入,断裂韧性和断裂能显着提高,并随着填料含量的增加而提高。粒度对断裂韧性的影响可以忽略不计。使用SEM和TOM观察断裂表面显示出纳米二氧化硅颗粒脱粘,基质空洞生长和基质剪切带的证据,这归因于纳米二氧化硅填充的环氧体系的韧性增加。;两种不同尺寸分布的含环氧混合物研究了二氧化硅颗粒(42微米和23 nm-170nm颗粒)的可能增倍增韧效果,并进一步了解了双峰粒度分布系统的颗粒-环氧相互作用和增韧机理。与仅包含一种粒径的二氧化硅颗粒的环氧树脂相比,其断裂韧性提高了约30%。清楚地观察到由于大​​颗粒的颗粒脱粘和小颗粒的塑料空洞生长的相互作用而使韧性提高。当大颗粒和小颗粒的体积分数比大于50:50时,发生了韧性的改善。发现增加的韧性是相加的而不是相乘的作用。

著录项

  • 作者

    Dittanet, Peerapan.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Chemical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号