首页> 外文学位 >Design and Control of Multimodal Single-Legged Vehicles with Variable Geometry Reaction Wheel Arrays.
【24h】

Design and Control of Multimodal Single-Legged Vehicles with Variable Geometry Reaction Wheel Arrays.

机译:可变几何反作用轮阵列的多式联运单腿车辆的设计与控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the mechanical and control design of single-legged reaction wheel stabilized robots with wheeled and monopedal locomotion capabilities. The incorporation of variable-geometry reaction wheel arrays (RWAs) increases control authority, as compared to conventional RWAs, and is facilitated by the design of spring-loaded mechanical linkages, which complement high-speed/low-torque actuation and enable the directed release of gradually-accumulated spring energy. The design of the final prototype enables roving, self-uprighting, quasi-static stair-climbing maneuvers, and conventional or end-over-end monopedal locomotion. Linear time-varying (LTV) linear quadratic regulator (LQR) control gains for the stabilization of continuous single-legged hopping maneuvers are solved for, based on the linearization of equations of motion that incorporte nonlinear dampers in order to emulate the no-slip and no-penetration conditions. These controllers are demonstrated in simulation and have been tested on the latest physical prototype. Comparison against high-speed video has revealed that significant angular estimate drift is a key limiting factor towards robust stabilization in practice. A key challenge arises from the excitation of structural modes during the touchdown portion of continuous hopping. The frequencies of these vibrations lie within the controller bandwidth, due to the limited control authority of the system, leading to instability from positive feedback. Significant over-estimation of the forward velocity has been observed to result from foot slip near takeoff. A method of estimating the instantaneous rotation center position using offset accelerometers is developed in order to detect foot slip.
机译:本文提出了具有脚轮和单脚运动功能的单腿反作用轮稳定机器人的机械和控制设计。与传统的RWA相比,可变几何反作用轮阵列(RWA)的结合增加了控制权限,并且通过弹簧加载的机械连杆机构的设计得以简化,弹簧连杆机构补充了高速/低转矩致动并实现了定向释放逐渐积累的弹簧能量最终原型的设计可实现粗纱,自立,准静态爬楼梯操作以及常规或端到端单脚踏板运动。基于运动方程的线性化,求解了线性时变(LTV)线性二次调节器(LQR)的控制增益,以稳定连续单腿跳跃动作,该线性方程与非线性阻尼器成比例,以便模拟防滑和无穿透条件。这些控制器已在仿真中进行了演示,并已在最新的物理原型上进行了测试。与高速视频的比较表明,角度估计漂移很大是实践中稳定鲁棒性的关键限制因素。关键的挑战来自连续跳跃的触地部分期间结构模式的激发。由于系统的控制权限有限,这些振动的频率在控制器的带宽内,从而导致正反馈不稳定。观察到向前速度的明显高估是由于起飞附近的脚滑引起的。为了检测脚的滑动,开发了一种使用偏移加速度计估计瞬时旋转中心位置的方法。

著录项

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号