首页> 外文学位 >Theoretical analysis of laterally vibrating microcantilever sensors in a viscous liquid medium.
【24h】

Theoretical analysis of laterally vibrating microcantilever sensors in a viscous liquid medium.

机译:粘性液体介质中横向振动微悬臂梁传感器的理论分析。

获取原文
获取原文并翻译 | 示例

摘要

Dynamically driven microcantilevers are normally excited into resonance in the out-of-plane flexural mode. The beam's resonant frequency and quality factor are used to characterize the devices. The devices are well suited for operation in air, but are limited in viscous liquid media due to the increased viscous damping. In order to improve these characteristics, other vibration modes such as the in-plane (or lateral) flexural mode are investigated. In this work, microcantilevers vibrating in the in-plane flexural mode (or lateral direction) in a viscous liquid medium are investigated. The hydrodynamic forces on the microcantilever as a function of both Reynolds number and aspect ratio (thickness over width) are first calculated using a combination of numerical methods and Stokes' solution. The results allowed for the resonant frequency, quality factor, and mass sensitivity to be investigated as a function of both beam geometry and medium properties. The predicted resonant frequency and quality factor for several different laterally vibrating beams in water are also found to match the trends given by experimentally determined values found in the literature.;The results show a significant improvement over those of similar devices vibrating in the out-of-plane flexural mode. The resonant frequency increases by a factor proportional to the inverse of the beam's aspect ratio. Moreover, the resonant frequency of a laterally vibrating beam shows a smaller decrease when immersed in water (5-10% compared to ~50% for transversely vibrating beams) and, as the viscosity increases, the resonant frequency decreases slower compared to beams excited transversely. The quality factor is found to increase by a factor of 2-4 or higher depending on the medium of operation and the beam geometry. Due to the increased resonant frequency and the decreased effective mass of the beam (compared to beams excited transversely), the estimated mass sensitivity of a laterally excited microcantilever is found to be much larger (up to two orders of magnitude). The improvement in these characteristics is expected to yield much lower limits of detection in liquid-phase bio-chemical sensing applications.
机译:动态驱动的微悬臂通常在平面外弯曲模式下激发成共振。光束的谐振频率和品质因数用于表征器件。该设备非常适合在空气中运行,但由于增加了粘性阻尼,因此在粘性液体介质中受到限制。为了改善这些特性,研究了其他振动模式,例如平面(或横向)弯曲模式。在这项工作中,研究了在粘性液体介质中以面内弯曲模式(或横向)振动的微悬臂梁。首先使用数值方法和斯托克斯解决方案的组合计算微悬臂梁上的流体动力,该流体动力是雷诺数和纵横比(厚度比宽度)的函数。结果使得共振频率,品质因数和质量敏感度都可以作为光束几何形状和介质特性的函数进行研究。还发现水中几种不同的横向振动梁的预测共振频率和品质因数与文献中实验确定的值所给出的趋势相匹配。;结果表明,与在户外进行振动的类似设备相比,该方法有显着改进平面弯曲模式。共振频率增加一个与光束纵横比成反比的因数。此外,横向振动梁的谐振频率在浸入水中时显示出较小的下降(5-10%,而横向振动梁为〜50%),并且,随着粘度的增加,与横向激励梁相比,谐振频率下降得更慢。已经发现,取决于操作介质和光束几何形状,品质因数会增加2-4倍或更高。由于光束的共振频率增加和有效质量降低(与横向激发的光束相比),发现横向激发的微悬臂梁的估计质量灵敏度要大得多(最多两个数量级)。这些特性的改善有望在液相生化传感应用中产生更低的检测限。

著录项

  • 作者

    Cox, Russell.;

  • 作者单位

    Marquette University.;

  • 授予单位 Marquette University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号