首页> 外文学位 >Effect of water on olivine single crystals plasticity, deformed under high pressure and high temperature.
【24h】

Effect of water on olivine single crystals plasticity, deformed under high pressure and high temperature.

机译:水对橄榄石单晶可塑性的影响,在高压和高温下会变形。

获取原文
获取原文并翻译 | 示例

摘要

The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km.;Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively.;By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa.;Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.
机译:地球上地幔主要由橄榄石组成,具有地震各向异性。在220 km的深度观察到地震各向异性衰减。卡拉托等。 (1992年)将这种衰减归因于两种变形机制之间的过渡,这是由含水量的变化引起的,从220 km以上的位错蠕变到220 km以下的扩散蠕变。 Couvy(2005)和Mainprice等。 (2005年)预测了由压力引起的晶格优先取向的变化,这是由于滑动系统从[100]滑移到[001]滑移而引起的,并引起了地震各向异性的衰减。拉特龙等人。 (2007年)在无水条件下进行了单晶变形实验,观察到滑移系统转变发生在8GPa附近,对应于260Km的深度。进行了实验以量化水对使用D-DIA压机变形的橄榄石单晶的影响和同步加速器光束。沿[110] c,[011] c和[101] c的晶体学方向在单轴压缩条件下进行变形,压力范围为4至8GPa,温度为1373至1473K。围绕单晶环带的滑石套被用作组件中的水源。分别通过原位X射线衍射和时间分辨成像来计算应力和样品应变率。通过直接比较单晶应变率,我们观察到[110] c在低于5GPa时变形快于[011] c。但是,高于6GPa时,[011] c的变形要快于[110] c。这表明,[100](010)是低于5GPa的主导滑移系统,而高于6GPa的是[001](010)。根据我们的结果,由压力引起的滑移系统过渡发生在6GPa。水会通过降低过渡压力来影响切换发生的压力。压力对滑移系统活动的影响已被量化,并且还评估了两个方向的水解减弱作用。数据还表明温度会影响滑移系统的活动。地震各向异性衰减深度的区域变化,这将取决于局部羟基含量和温度变化,并解释了地震各向异性衰减发生在地幔中约220Km深度,压力约为6GPa时; MgO单晶的变形还进行了取向[100],[110]和[111]。结果预示着压力再次导致滑移系统活动在23GPa时发生变化。这解释了在下地幔中观测到的地震各向异性。

著录项

  • 作者

    Girard, Jennifer.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Geophysics.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号