首页> 外文学位 >A Baernstein problem of p-harmonic measures and an invariance of p-harmonic functions under boundary perturbations using tug-of-war with noise.
【24h】

A Baernstein problem of p-harmonic measures and an invariance of p-harmonic functions under boundary perturbations using tug-of-war with noise.

机译:p调和测度的Baernstein问题和使用噪声的拔河对边界扰动下p调和函数的不变性。

获取原文
获取原文并翻译 | 示例

摘要

Given a planar domain O and p ∈ (1, infinity), let Hf denote the p-harmonic extension to O of a boundary function f : ∂O → R (as defined via Perron's method). We show that if f is a piecewise continuous function, O is piecewise smooth near where f is discontinuous, and g is a bounded function on ∂O such that g = f on ∂O E where E ⊂ R2 is a countable set with op( E, O) = 0, then Hf = H g. In particular, this solves a problem posed by Baernstein in 1998, who asked the question for 0-1 valued F and F˜ on the unit circle; it extends work of Bjorn, Bjorn, and Shanmugalingam, who answered the question for 1 p ≤ 2. A key step is to show that p-harmonic extensions approximately agree with harmonic extensions in a neighborhood of a jump discontinuity.;For a general bounded domain O ⊂ R2 with n ≥ 2, we will also give several invariance results under perturbations on countable subsets of ∂O. Most of results are new for p > n. The main tool is tug-of-war with noise which was introduced by Yuval Peres and Scott Sheffield in [30]. In particular, when f is a continuous function on ∂O and g is a function on ∂O such that g = f except a point, we provide a necessary and sufficient condition for Hf = Hg where Hf and Hg denote the Perron solutions of f and g, respectively. It turns out that the point of f ≠ g should be of p-harmonic measure zero with respect to O. As a consequence, we can show that E ⊂ ∂O is a countable set of p-harmonic measure zero if and only if every point of E is of p-harmonic measure zero. Therefore, the p-harmonic measure is subadditive on {E ⊂ O : o p(E, O) = 0 and E is countable}.
机译:给定一个平面域O和p∈(1,无穷大),令Hf表示边界函数f的p谐波扩展:∂O→R(通过Perron方法定义)。我们证明,如果f是分段连续函数,则在f不连续的地方附近是O分段光滑的,并且g是∂O的有界函数,使得∂OE上的g = f,其中E⊂R2是op(E ,O)= 0,则Hf = H g。特别是,这解决了贝恩斯坦(Baernstein)在1998年提出的一个问题,该问题在单位圆上要求0-1的F和F〜值。它扩展了Bjorn,Bjorn和Shanmugalingam的工作,他们回答了1 ≤2的问题。关键一步是证明p调和扩展与跳跃不连续附近的谐波扩展近似一致。当n≥2的有界域O⊂R2时,在willO的可数子集摄动的情况下,我们还将给出几个不变性结果。对于p> n,大多数结果都是新的。主要工具是带噪音的拔河比赛,这是尤瓦尔·佩雷斯(Yuval Peres)和斯科特·谢菲尔德(Scott Sheffield)在[30]中引入的。特别是,当f是∂O的连续函数,而g是∂O的函数,使得g = f除点外,我们为Hf = Hg提供了充要条件,其中Hf和Hg表示f的Perron解和g分别。事实证明,相对于O,f≠g的点应为p调和量度零。因此,我们可以证明,当且仅当每个E点为p谐波测量零。因此,p谐波测度在{E⊂O:o p(E,O)= 0且E可数}上是次加和的。

著录项

  • 作者

    Kim, Sungwook.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号