首页> 外文学位 >Electrokinetic transport and manipulation of particles in curved microchannels.
【24h】

Electrokinetic transport and manipulation of particles in curved microchannels.

机译:弯曲微通道中颗粒的电动迁移和操纵。

获取原文
获取原文并翻译 | 示例

摘要

The investigation of electrokinetic particle transport in confined microchannels has practical significances in a variety of applications ranging from traditional gel electrophoresis to electrokinetic microfluidics-based lab-on-a-chip devices. To date, however, studies on particle electrokinetics have been limited to primarily theoretical or numerical analyses in straight microchannels of simple geometries. Very little work has been done on electrokinetic particle motions in real microchannels which usually consist of one or multiple turns. This thesis is dedicated to the fundamental and applied studies of electrokinetic transport and manipulation of particles in various curved microchannels using a combined experimental, theoretical, and numerical method.;First, a fundamental study of particle electrokinetics in a microchannel U-turn, a typical unit in LOC devices, was investigated. A 2-D numerical model based on finite element method was developed to understand and predict the particle motion within the U-turn. It is demonstrated that particles are deflected to the outer wall of the turn by curvature-induced dielectrophoresis (termed cDEP) due to the locally intrinsic electric field gradients. Moreover, this lateral displacement increases with the rise of either the applied electric field or the particle size.;Next, we utilize the cDEP in microchannel turns to implement a continuous electrokinetic focusing of particles in serpentine microchannels. Particles are demonstrated to gradually migrate to the centerline due to the periodically switched dielectrophoretic force they experience in a serpentine microchannel. This electrokinetic focusing favors large electric fields and large particles, and also increases when the number of serpentine periods increases. Such focusing also takes place in a spiral microchannel, where, however, particles are eventually focused to a stream flowing near the outer sidewall of the channel.;Then, we explore the applications of cDEP to continuous electrokinetic separation of particles in curved microchannels. We develop two different approaches based on what we have acquired from the studies of particle electrokinetics in serpentine and spiral microchannels. The first approach employs a sheath flow to focus particles to one sidewall of a serpentine microchannel, where particles are then deflected to different flow paths by cDEP and thus sorted at the exit of serpentine section. We use this method to separate particles and cells by size at low DC electric fields. The second approach eliminates the sheath flow focusing of particles by the use of particle deflection and focusing in a double-spiral microchannel. Specifically, particles are focused by cDEP to one single stream near the outer wall of the first spiral, which is then displaced by cDEP and divided into two or more sub-streams in the second spiral, enabling the continuous sorting. We use this approach to implement the separation of particles by size and by charge, respectively. Moreover, we also demonstrate a continuous ternary separation of particle by size and charge simultaneously.
机译:在从传统的凝胶电泳到基于电动微流控的芯片实验室设备的各种应用中,研究密闭微通道中的电动颗粒传输具有实际意义。然而,迄今为止,关于粒子电动学的研究仅限于简单几何形状的直微通道中的理论或数值分析。在实际的微通道中,通常由一圈或多圈组成的电动粒子运动方面,所做的工作很少。本论文致力于结合实验,理论和数值方法,对各种弯曲微通道中颗粒的电动运动和操纵进行基础和应用研究。首先,对典型的微通道U形转弯中的颗粒电动学进行基础研究。对LOC设备中的单元进行了调查。建立了基于有限元方法的二维数值模型,以了解和预测U形转弯内的粒子运动。结果表明,由于局部固有的电场梯度,曲率感应介电电泳(称为cDEP)将粒子偏转到转弯的外壁。此外,该横向位移随着施加电场或颗粒尺寸的增加而增加。接下来,我们在微通道弯道中利用cDEP来实现蛇形微通道中颗粒的连续电动聚焦。粒子由于在蛇形微通道中经历的周期性切换介电泳力而被证明逐渐迁移到中心线。这种电动聚焦有利于大电场和大粒子,并且在蛇形周期数增加时也会增加。这种聚焦也发生在螺旋微通道中,但是,最终粒子将最终聚焦到在通道外侧壁附近流动的流中。然后,我们探索了cDEP在弯曲微通道中对颗粒进行连续电动分离的应用。我们基于对蛇形和螺旋形微通道中的粒子电动学的研究,开发了两种不同的方法。第一种方法采用鞘流将颗粒聚焦到蛇形微通道的一个侧壁,然后在此处通过cDEP将颗粒偏转到不同的流路,从而在蛇形截面的出口进行分类。我们使用这种方法在低直流电场下按大小分离颗粒和细胞。第二种方法通过使用颗粒偏转和在双螺旋微通道中聚焦来消除颗粒的鞘流聚焦。具体而言,粒子被cDEP聚焦到第一螺旋的外壁附近的单个流中,然后被cDEP置换并在第二螺旋中分成两个或多个子流,从而实现连续分选。我们使用这种方法分别通过大小和电荷实现粒子的分离。此外,我们还证明了同时通过尺寸和电荷连续进行三元分离。

著录项

  • 作者

    Zhu, Junjie.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号