首页> 外文学位 >Effects of ocean acidification on iron availability and requirements in marine phytoplankton.
【24h】

Effects of ocean acidification on iron availability and requirements in marine phytoplankton.

机译:海洋酸化对海洋浮游植物中铁的有效性和需求的影响。

获取原文
获取原文并翻译 | 示例

摘要

Anthropogenic carbon dioxide (CO2) dissolves into the ocean and leads to a suite of changes in the carbonate chemistry of surface seawater, collectively known as ocean acidification. Since marine phytoplankton are responsible for about half of the global primary production, their response to ocean acidification is likely to be significant for the productivity and/or structure of marine ecosystems.;In vast areas of the oceans, the vanishingly low concentration of iron (Fe), an essential trace nutrient, often limits the growth of marine phytoplankton. It is known that the availability of Fe to phytoplankton depends on its chemistry in seawater, which is highly sensitive to changes in pH. Because of the abundance of Fe in the photosynthetic apparatus, it is also possible that its cellular requirement in phytoplankton may be affected by the ambient CO2 concentration. In addition, the high Fe requirement of nitrogen (N2)-fixing organisms may make them particularly sensitive to changes in Fe bioavailability brought about by acidification.;In this thesis, I address the question of how seawater acidification will alter the availability and requirement of Fe in marine phytoplankton by conducting laboratory experiments with model organisms under well defined conditions. These laboratory experiments are complemented by some manipulation experiments with field samples of natural seawater. In all these experiments, I aim at uncovering the chemical and biological mechanisms responsible for the observed effects.;Experimentally, various methods of manipulating seawater pCO 2/pH -- bubbling of CO2-enriched air, acid/base addition and use of buffers -- give the same rates of growth in the diatom Thalassiosira weissflogii and the coccolithophore Emiliania huxleyi and of calcification in the calcifier. However, the bubbling of cultures tends to induce more variable results and the presence of organic buffers changes the availability of trace metals.;As seawater acidifies, the uptake of Fe chelated by a variety of organic ligands decreases in model diatoms and coccolithophores. Such an effect of ocean acidification results from changes in Fe chemistry caused by the decreasing pH and not a physiological response of the phytoplankton. In agreement with the laboratory data, a slower rate of Fe uptake by T. weissflogii with decreasing pH is observed in both coastal and oceanic Atlantic surface water samples where Fe bound to natural Fe-chelating ligands. The Fe requirement of model phytoplankton, however, remains unchanged with increasing pCO2.;The rates of both N2 fixation and growth of the Fe-limited cyanobacterium Trichodesmium decline at high pCO 2/low pH even though more Fe is added to maintain constant Fe availability. To compensate for the decreased rate of N2 fixation, which is due to decreasing pH rather than increasing pCO 2, the diazotroph synthesizes additional nitrogenase enzyme at the expense of Fe-containing photosynthetic proteins. Consequently the growth rate of the Fe-deficient N2-fixer decreases in acidified medium.;Overall, this thesis contributes to our understanding of the response of marine primary producers to ocean acidification caused by the ongoing increase in atmospheric CO2. It demonstrates that how the CO2-driven changes in the seawater chemistry can profoundly affect marine phytoplankton through both chemical and biological processes.
机译:人为造成的二氧化碳(CO2)溶解到海洋中,导致表层海水的碳酸盐化学性质发生一系列变化,统称为海洋酸化。由于海洋浮游植物约占全球初级生产的一半,因此它们对海洋酸化的反应可能对海洋生态系统的生产力和/或结构具有重要意义。铁),一种必需的微量营养素,通常会限制海洋浮游植物的生长。众所周知,浮游植物中铁的可利用性取决于其在海水中的化学性质,该化学性质对pH的变化高度敏感。由于光合作用中铁的含量很高,因此浮游植物中其对细胞的需求可能会受到周围CO2浓度的影响。此外,固氮生物对铁的高需求可能使它们对酸化引起的铁生物利用度变化特别敏感。本论文探讨了海水酸化如何改变铁的生物利用度和需求的问题。通过在定义明确的条件下对模型生物进行实验室实验,海洋浮游植物中的铁。这些实验室实验通过天然海水田间采样的一些操作实验得到了补充。在所有这些实验中,我的目的是揭示造成观察到的效应的化学和生物学机制。实验上,各种控制海水pCO 2 / pH的方法-鼓泡富含CO2的空气,添加酸/碱和使用缓冲液- -给硅藻Thalassiosira weissflogii和coccolithophore Emiliania huxleyi提供相同的生长速率,并在钙化器中获得相同的钙化速率。然而,培养物的鼓泡倾向于引起更多可变的结果,并且有机缓冲剂的存在改变了痕量金属的可用性。随着海水的酸化,模型硅藻和球墨镜中各种有机配体螯合的铁的吸收减少。海洋酸化的这种影响是由于pH降低引起的铁化学变化引起的,而不是浮游植物的生理反应引起的。与实验室数据一致,在沿海和海洋大西洋地表水样品中均观察到铁与天然铁螯合配体结合的情况,魏氏梭菌对铁的吸收速率降低且pH降低。然而,随着pCO2的增加,浮游植物对Fe的需求量保持不变。;即使添加了更多的Fe以保持恒定的Fe利用率,在高pCO 2 /低pH条件下,N2的固定率和Fe限制的蓝细菌Trichodesmium的生长速率都会下降。 。为了补偿由于降低pH而不是增加pCO 2而导致的N2固定速率降低,重氮营养合成了额外的固氮酶,但以含铁的光合蛋白为代价。因此,缺铁的固氮剂在酸性介质中的生长速率降低。总体而言,本论文有助于我们理解海洋初级生产者对大气中二氧化碳不断增加所引起的海洋酸化的反应。它表明,CO2驱动的海水化学变化如何通过化学和生物过程深刻影响海洋浮游植物。

著录项

  • 作者

    Shi, Dalin.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Biology Oceanography.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号