首页> 外文学位 >Investigations into the dynamic molecular mechanisms that govern the final stages of neurotransmitter release.
【24h】

Investigations into the dynamic molecular mechanisms that govern the final stages of neurotransmitter release.

机译:研究控制神经递质释放最后阶段的动态分子机制。

获取原文
获取原文并翻译 | 示例

摘要

The release of neurotransmitter from synaptic vesicles is a process that underlies almost all information transfer within the nervous system. This process is exquisitely regulated, both spatially and temporally, such that the proper signals are relayed between neurons to allow for functional integration in higher level organisms. Neurotransmitter release occurs when calcium influx into a presynaptic nerve terminal triggers the fusion of synaptic vesicles with the plasma membrane. SNARE proteins constitute the minimal protein machinery required to catalyze membrane fusion, and formation of SNARE core complexes bridging the vesicle and plasma membranes is thought to generate the energy required to bring these membranes into close proximity and to initiate their fusion. As such, an understanding of SNARE protein function, the dynamic processes that regulate the activity of SNARE complexes, and their relationship to mediating a lipid fusion event, is critical to understanding neurotransmitter release. These topics are the focus of this dissertation, which is comprised of three studies.;The first study identified direct interactions between the polybasic juxtamembrane region of the SNARE protein syntaxin1A, and the acidic phospholipids, phosphatidic acid and PI(4,5)P2, and demonstrated that these electrostatic interactions are critical in regulating the energetic requirements for membrane fusion. Notably, the findings of this study bridge the gap between the protein-centered field of SNARE regulation and the lipid-centered field of membrane fusion, by demonstrating that proteins and lipids cooperate to initiate and complete membrane fusion. The second study examined the dynamic regulation of tomosyn, a soluble SNARE protein that may actually inhibit neurotransmitter release through the formation of non-fusogenic SNARE core complexes. Importantly, this study uncovered a novel mechanism by which formation of functional SNARE core complexes can be finely tuned by signaling pathways reflective of secretory demand. The final study of this dissertation focused on development of a novel fluorescence imaging approach, termed sensitized-emission TIRF-FRET. This technique provides the high spatiotemporal resolution required for visualization of changes in molecular interactions in the context of individual secretory vesicles undergoing exocytosis. Importantly, application of this technique is likely to transform our current understanding of the many dynamic molecular processes underlying neurotransmitter release.
机译:突触小泡释放神经递质是一个过程,几乎是神经系统内所有信息传递的基础。这个过程在空间和时间上都得到了很好的调节,从而使正确的信号在神经元之间传递,从而可以在更高水平的生物体中进行功能整合。当钙流入突触前神经末梢触发突触囊泡与质膜融合时,就会发生神经递质释放。 SNARE蛋白质构成催化膜融合所需的最小蛋白质机制,桥接囊泡和质膜的SNARE核心复合物的形成被认为产生了将这些膜紧密结合并引发融合所需的能量。因此,对SNARE蛋白质功能的了解,调节SNARE复合物活性的动态过程以及它们与介导脂质融合事件的关系,对于理解神经递质的释放至关重要。这些主题是本论文的重点,包括三项研究:第一项研究确定了SNARE蛋白syntaxin1A的多囊近膜区域与酸性磷脂,磷脂酸和PI(4,5)P2之间的直接相互作用,并证明这些静电相互作用对于调节膜融合的能量需求至关重要。值得注意的是,这项研究的结果通过证明蛋白质和脂质共同启动和完成膜融合,弥合了SNARE调节的以蛋白质为中心的领域与以膜融合为脂质的领域之间的差距。第二项研究检查了tomosyn的动态调节,tomosyn是一种可溶性SNARE蛋白,实际上可以通过形成非融合SNARE核心复合物来抑制神经递质的释放。重要的是,这项研究揭示了一种新的机制,通过该机制,可以通过反映分泌需求的信号通路对功能性SNARE核心复合物的形成进行微调。本论文的最终研究集中于开发一种新型的荧光成像方法,称为敏化发射TIRF-FRET。这项技术提供了高时空分辨率,可用于可视化经历胞吐作用的单个分泌性囊泡中分子相互作用的变化。重要的是,该技术的应用可能会改变我们目前对神经递质释放的许多动态分子过程的理解。

著录项

  • 作者

    Lam, Alice D.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Neuroscience.;Biology Physiology.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号