首页> 外文学位 >Neural based modeling of nonlinear microwave devices and circuits.
【24h】

Neural based modeling of nonlinear microwave devices and circuits.

机译:非线性微波设备和电路的基于神经的建模。

获取原文
获取原文并翻译 | 示例

摘要

Artificial Neural Networks (ANN) have been recently recognized as a useful tool for modeling and design optimization problems in RF/microwave Computer Aided Design (CAD). Neural network models can be trained from measured or simulated microwave data. The resulting neural models can be used during microwave design to provide instant answers to the task they learned, which otherwise are computationally expensive. This thesis addresses the application of ANN to efficient and accurate modeling of nonlinear microwave devices and circuits.; Major contributions of the thesis include the adjoint neural network (ADJNN) technique, the dynamic neural network (DNN) technique and an advanced neural model extrapolation technique. The ADJNN and the DNN are two approaches that address neural based nonlinear microwave device/circuit modeling in two different cases, i.e., in the cases that the simplified topology information of such device/circuit is available or unavailable. The ADJNN approach uses a combination of circuit and neural models, where the circuit dynamics are defined by the topology and the nonlinearity is defined by ANNs. The circuit topology can be obtained from empirical models or equivalent circuits. The ADJNN technique can be used to develop a neural based model for the nonlinear device/circuit using direct current (DC) and small-signal data. The trained model can be subsequently used to predict large-signal effects in microwave circuit or system design.; The DNN approach can be used to directly model the nonlinear microwave device or circuit from its input-output data without having to rely on its internal details. The DNN model itself can represent both dynamic effects and nonlinearity. An algorithm is developed to train the model with time or frequency domain large-signal information. Efficient representations of DNN are described for convenient incorporation of the trained model into high-level circuit or system simulation.; Further progress of neural based nonlinear microwave device/circuit modeling is made by the advanced neural model extrapolation technique. It enables neural based nonlinear device/circuit models to be robustly used in iterative computational loops, e.g., optimization and Harmonic Balance (HB), involving neural model inputs as iterative variables. Compared with standard neural based methods (i.e., without extrapolation), the proposed technique improves neural based microwave optimization and makes nonlinear circuit design significantly more robust.; The techniques developed in this thesis provide enhanced efficiency, accuracy and robustness for neural based nonlinear microwave device/circuit modeling. It is a unique contribution to further realizing the flexibility of neural based approaches in nonlinear microwave modeling, simulation and optimization.
机译:人工神经网络(ANN)最近被公认为是用于RF /微波计算机辅助设计(CAD)中的建模和设计优化问题的有用工具。可以从测量或模拟的微波数据中训练神经网络模型。最终的神经模型可以在微波设计期间用于提供他们所学任务的即时答案,否则这些方法在计算上是昂贵的。本文探讨了人工神经网络在非线性微波器件和电路的高效准确建模中的应用。论文的主要贡献包括伴随神经网络(ADJNN)技术,动态神经网络(DNN)技术和高级神经模型外推技术。 ADJNN和DNN是两种在两种不同情况下,即在此类设备/电路的简化拓扑信息可用或不可用的情况下,基于神经网络的非线性微波设备/电路建模的方法。 ADJNN方法使用电路和神经模型的组合,其中电路动态由拓扑定义,而非线性则由ANN定义。电路拓扑可以从经验模型或等效电路中获得。 ADJNN技术可用于使用直流电(DC)和小信号数据为非线性设备/电路开发基于神经的模型。经过训练的模型可以随后用于预测微波电路或系统设计中的大信号影响。 DNN方法可用于根据其输入输出数据直接对非线性微波设备或电路建模,而不必依赖其内部细节。 DNN模型本身可以表示动态效果和非线性。开发了一种算法来训练带有时域或频域大信号信息的模型。描述了DNN的有效表示,以便将训练好的模型方便地合并到高级电路或系统仿真中。先进的神经模型外推技术使基于神经的非线性微波器件/电路建模进一步发展。它使基于神经的非线性设备/电路模型可以在迭代计算循环中稳健地使用,例如优化和谐波平衡(HB),其中将神经模型输入作为迭代变量。与标准的基于神经的方法相比(即不进行外推),所提出的技术改进了基于神经的微波优化,并使非线性电路设计更加坚固。本文开发的技术为基于神经的非线性微波器件/电路建模提供了更高的效率,准确性和鲁棒性。这对进一步实现基于非线性的非线性微波建模,仿真和优化方法的灵活性做出了独特的贡献。

著录项

  • 作者

    Xu, Jianjun.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号