首页> 外文学位 >The structure and function of the most prevalent mutant form of aldolase B associated with hereditary fructose intolerance.
【24h】

The structure and function of the most prevalent mutant form of aldolase B associated with hereditary fructose intolerance.

机译:醛缩酶B最普遍的突变形式的结构和功能与遗传性果糖不耐症有关。

获取原文
获取原文并翻译 | 示例

摘要

Hereditary fructose intolerance (HFI) is an autosomal recessive disorder affecting one in 20,000 individuals. HFI is caused by mutations in the gene encoding aldolase B, a tetrameric enzyme central to the gluconeogenic and fructose metabolism pathways. The most common mutation is an Ala → Pro substitution at position 149 (A149P), which accounts for 53% of the HFI alleles identified worldwide. Elucidation of the structural and functional characteristics of the aldolase B A149P substitution (AP-aldolase) required expression as a glutathione S-transferase fusion protein. The fusion protein promoted stability and facilitated purification of AP-aldolase. Circular dichroism spectroscopy on purified AP-aldolase shows secondary and tertiary structural transitions (T1/2) at 45°C and 33°C, respectively. Kinetic investigations reveal that the residual activity of AP-aldolase is sensitive to temperature, having 15% of wild-type activity at 10°C, but only about 0.5% activity at 30°C, with T1/2 = 25°C. In contrast, changes in the Km, values compared to wild-type toward the substrates fructose-1,6-bisphosphate, fructose-1-phosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate are temperature-independent, and suggest a perturbation at the C(1)-phosphate binding site. Gel-filtration chromatography and zonal sedimentation experiments show that the quaternary structure of AP-aldolase is disrupted at all temperatures, being mostly dimeric. The A149P substitution is not located at a subunit interface in the aldolase structure. To further clarify the structural perturbations, crystals of AP-aldolase were grown at two temperatures (4 and 18°C), and the structure solved at 3.0 Å resolution by X-ray crystallography, using the wild-type structure as the phasing model. The structure reveals that the single residue substitution causes significant perturbation and molecular disorder at the site of mutation (residues 148–158), which is propagated onto three adjacent β-strand and loop regions (residues 110–128, 189–200, 234–243). Disorder in the 110–128 loop region provides an explanation for the disrupted quaternary structure. Greater structural perturbation is observed in the structure determined at 18°C. These results are discussed in the context of HFI, and the limitations of homology modeling in predicting perturbations of protein structure and function.
机译:遗传性果糖不耐受症(HFI)是一种常染色体隐性遗传疾病,影响20,000个人中的一个。 HFI是由醛缩酶B(醛糖生成和果糖代谢途径中心的四聚酶)编码基因的突变引起的。最常见的突变是在位置149(A149P)处的Ala→Pro取代,占全球确定的HFI等位基因的53%。阐明醛缩酶B A149P取代(AP-醛缩酶)的结构和功能特征需要表达为谷胱甘肽S-转移酶融合蛋白。融合蛋白促进了稳定性并促进了AP-醛缩酶的纯化。纯化的AP-醛缩酶的圆二色光谱分别显示在45°C和33°C下的二级和三级结构转变( T 1/2 )。动力学研究表明,AP-醛缩酶的残余活性对温度敏感,在10°C时具有15%的野生型活性,而在30°C时仅具有0.5%的活性,其中 T < sub> 1/2 = 25°C。相比之下,与野生型相比, K m 值的变化朝向底物果糖-1,6-双磷酸酯,果糖-1-磷酸酯,甘油醛-3-磷酸和磷酸二羟基丙酮是温度无关的,并建议在C(1)-磷酸结合位点上产生扰动。凝胶过滤色谱和区域沉淀实验表明,AP-醛缩酶的季结构在所有温度下均被破坏,大部分为二聚体。 A149P取代不位于醛缩酶结构中的亚基界面处。为了进一步阐明结构扰动,AP-醛缩酶晶体在两个温度(4和18°C)下生长,并使用野生型结构作为定相模型,通过X射线晶体学以3.0Å的分辨率解析了该结构。该结构表明,单个残基取代会在突变位点(残基148–158)引起明显的扰动和分子紊乱,并传播到三个相邻的β链和环区域(残基110–128、189–200、234–残基) 243)。 110-128回路区域的混乱为四级结构的破坏提供了解释。在18°C下确定的结构中观察到更大的结构扰动。这些结果在HFI的背景下进行了讨论,并且同源性建模在预测蛋白质结构和功能扰动方面的局限性也得到了讨论。

著录项

  • 作者

    Malay, Ali Andres Defrance.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biology Molecular.; Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号