首页> 外文学位 >Advanced processing for scaled depletion and enhancement mode aluminum gallium nitride/gallium nitride HEMTs.
【24h】

Advanced processing for scaled depletion and enhancement mode aluminum gallium nitride/gallium nitride HEMTs.

机译:用于成比例耗尽和增强模式的氮化铝镓/氮化镓HEMT的先进工艺。

获取原文
获取原文并翻译 | 示例

摘要

Demands for high-frequency signal amplification have been addressed over the past decades with high electron mobility transistors (HEMTs) based on III-V semi-conductors such as GaAs, which can operate in mm-wave frequency bands (30-300 GHz). The high dielectric breakdown strength, saturated electron velocity, and carrier mobility in AlGaN/GaN two-dimensional electron gas (2DEG) provides a platform for higher output power density for amplification over a similar frequency range compared to more mature material systems such as GaAs. Nitride semiconductors present unique challenges to the device designer in terms of their strong polarization fields and sensitivity of 2DEG to fluctuations in surface potential and chemistry. Aggressive geometry scaling is required in order to extend the frequency response of GaN-based HEMTs into the mm-wave regime, and short-channel effects (SCEs) thus far have resulted in diminishing returns as gate lengths (lg's) are reduced below ∼300 nm. As for other semiconductor materials, successful field-effect transistor scaling requires that not only lg be reduced for low gate capacitance, but that channel aspect ratio defined as l g/d, where d is the gate-channel distance, remain large. Satisfying this requirement enables vanishingly short gates to retain strong channel modulation efficiency. In order to exploit the fast frequency response of the scaled intrinsic device we must also maintain low parasitic impedances through which the device is accessed.;n+-GaN-capped HEMT structures are used in this work to exploit surface potential screening of the cap layer and its expected advantage in terms of DC-RF current dispersion. To overcome processing challenges associated with aggressive scaling of GaN-based HEMTs we have developed technology enabling us to construct gates shorter than 30 nm and to precisely remove GaN and AlGaN from the gate area of (GaN/)AlGaN/GaN HEMTs to reduce d. The optical transparency of GaN has made consistent sub-100-nm gate definition challenging for electron beam lithography tools that employ optical height detection, and our transparent substrate electron beam focusing strategy eliminates such difficulty. Recessed gate GaN-based HEMTs have historically been plagued with high gate leakage and DC-RF current dispersion due to ion damage incurred during recess etching, but the N2/Cl2/O2 inductively-coupled plasma etch process described herein can provide very high GaN over AlGaN etch selectivity and does not require energetic ion bombardment. We verify this process using diodes on GaN/AlGaN/GaN and show that leakage currents are reduced by Schottky recessing when compared to non-recessed diodes, suggesting a low damage process.;We begin HEMT fabrication work by comparing two AlGaN/GaN epitaxial structures in terms of channel confinement and surface trapping effects by preparing and testing 220 nm baseline devices on said structures. Record sub-threshold characteristics for submicron GaN HEMTs including sub-VT slope of 67 mV/dec and on/off drain current ratio greater than 1010 are achieved, suggesting good potential scalability of HEMTs on this structure which employs acceptor compensation doping in the buffer layer. Next we demonstrate first generation GaN/AlGaN/GaN HEMTs with dielectrically-defined recessed 260 and 125 nm gates that exhibit reasonable DC performance, but low ftlg product of 10 GHz-mum due primarily to large fringing capacitance associated with long gate caps and high (0:87 O-mm) contact resistance. Electric field plating in these devices enables good X-band power performance -- e.g. 4.8 W/mm output power with PAE of 51%. Finally, we present systematic scaling of GaN/AlGaN/GaN HEMTs with process improvements such as recessed ohmic contacts providing uniform contact resistance below 0.5 O-mm. Variations of the gate recess process are used for controlled (∼1 nm/min) etching through the GaN cap and into the AlGaN barrier to fabricate HEMTs with dielectrically-defined gate lengths ranging from 29 to 1680 nm with barrier thicknesses of 29 (non recessed), 19, and 11 nm. We demonstrate enhancement-mode HEMTs with transconductance as high as 340 mS/mm and maximum drain current greater than 0.9 A/mm, as well as depletion-mode HEMTs with maximum drain current above 1 A/mm, small signal ftlg products exceeding 15 GHz-mum for lg down to 200 nm, and reasonable X-band output power of 3.3 W/mm with 46% PAE. With this we claim that by using our low-damage gate recess process we have effectively mitigated short channel effects into this lg regime.
机译:在过去的几十年中,使用基于III-V半导体(例如GaAs)的高电子迁移率晶体管(HEMT)满足了高频信号放大的需求,该器件可以在毫米波频段(30-300 GHz)中工作。与更成熟的材料系统(例如GaAs)相比,AlGaN / GaN二维电子气(2DEG)中的高介电击穿强度,饱和电子速度和载流子迁移率提供了一个平台,可在相似的频率范围内实现更高输出功率密度的放大。氮化物半导体在其强大的极化场以及2DEG对表面电势和化学物质波动的敏感性方面给器件设计人员带来了独特的挑战。为了将基于GaN的HEMT的频率响应扩展到毫米波状态,需要进行激进的几何缩放,并且由于栅极长度(lg's)减小到300以下,短沟道效应(SCE)到目前为止导致收益递减。纳米对于其他半导体材料,成功的场效应晶体管定标不仅要求降低栅极电容低的lg,而且要求将沟道宽高比定义为1 g / d(其中d是栅极沟道距离)保持较大。满足此要求可使门极消失,以保持强大的通道调制效率。为了利用缩放后的本征器件的快速频率响应,我们还必须保持较低的寄生阻抗,通过该寄生阻抗可以访问器件。在这项工作中,采用了n + -GaN封端的HEMT结构来研究覆盖层和衬底的表面电势屏蔽。其在DC-RF电流色散方面的预期优势。为了克服与基于GaN的HEMT的大规模缩放相关的处理挑战,我们开发了使我们能够构建短于30 nm的栅极并从(GaN /)AlGaN / GaN HEMT的栅极区域中精确去除GaN和AlGaN的技术,以降低d。 GaN的光学透明性使一致的100 nm以下栅极定义对于采用光学高度检测的电子束光刻工具具有挑战性,而我们的透明基板电子束聚焦策略消除了这种困难。凹入式基于GaN的HEMT一直以来都因凹入式蚀刻过程中发生的离子损伤而遭受高栅极漏电流和DC-RF电流分散的困扰,但是本文所述的N2 / Cl2 / O2电感耦合等离子体蚀刻工艺可以提供非常高的GaN AlGaN蚀刻具有选择性,并且不需要高能离子轰击。我们使用GaN / AlGaN / GaN上的二极管验证了此工艺,并表明与非凹陷二极管相比,肖特基凹陷减少了泄漏电流,表明损伤工艺很低;;我们通过比较两种AlGaN / GaN外延结构开始HEMT的制造工作通过在所述结构上准备和测试220 nm基线设备,在通道限制和表面捕获效应方面进行研究。实现了亚微米GaN HEMT的记录亚阈值特性,包括67 mV / dec的亚VT斜率和大于1010的开/关漏极电流比,这表明该结构在缓冲层中采用受主补偿掺杂的结构上具有良好的潜在可扩展性。接下来,我们展示第一代GaN / AlGaN / GaN HEMT,它们具有介电定义的260和125 nm凹入式栅极,这些栅极具有合理的DC性能,但是由于与长栅极盖相关的较大边缘电容和较高的( 0:87 O-mm)接触电阻。这些设备中的电场电镀可实现良好的X波段功率性能-例如输出功率为4.8 W / mm,PAE为51%。最后,我们提出了具有工艺改进功能的GaN / AlGaN / GaN HEMT的系统缩放比例,例如凹陷的欧姆接触可提供低于0.5 O-mm的均匀接触电阻。栅极凹进工艺的各种变化可用于通过GaN帽并进入AlGaN势垒的受控(〜1 nm / min)刻蚀,以制造介电定义的栅长范围为29至1680 nm,势垒厚度为29(非凹进)的HEMT ),19和11 nm。我们演示了跨导高达340 mS / mm,最大漏极电流大于0.9 A / mm的增强型HEMT,以及最大漏极电流大于1 A / mm的耗尽型HEMT,小信号ftlg产品超过15 GHz对于低至200 nm的lg来说,它具有最低的妈妈要求,合理的X波段输出功率为3.3 W / mm,PAE为46%。以此为前提,我们声称通过使用我们的低损伤门凹槽工艺,我们已经有效地缓解了进入这种LG制度的短通道效应。

著录项

  • 作者

    Schutte, Michael Lee.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号