首页> 外文学位 >Towards perpetual operation in renewable energy based sensor networks.
【24h】

Towards perpetual operation in renewable energy based sensor networks.

机译:在基于可再生能源的传感器网络中实现永久运行。

获取原文
获取原文并翻译 | 示例

摘要

Recent development in sensor platforms enables sensors to harvest various forms of renewable energy from the environment, such as solar, wind, thermal, and vibration. Although this provides sensors extended lifetime, time varying and dissimilar recharging rates of sensor nodes pose new challenges. To ensure no sensor ever runs out of energy, routing paths and data collection rates must adapt to the recharging capabilities of the sensors. Prior works on routing and data collection in sensor networks have focused on static resources. Thus, they can not be applied here. The goal of this dissertation is to design techniques and protocols that enable everlasting operation for rechargeable sensor networks.;In this dissertation, we first propose an adaptive data collection framework that optimizes the network utility by computing a proportionally fair rate assignment under the presence of renewable energy resources. The framework consists of three algorithms. The first algorithm, called QuickFix, allows the sensor nodes to quickly adapt their sampling rates and routing paths according to their short term average replenishment rates within an epoch when the underlying routing structure is a given DAG. To handle variations in recharging rates within an epoch, a localized energy management algorithm, called SnapIt, is adopted. The SnapIt algorithm dynamically adjusts the sampling rates computed by the QuickFix algorithm so that sensor's battery can be maintained at a target level, which ensures the perpetual operation of the network. To further handle the cases in which the underlying DAG routing structure is unknown, we propose a heuristic algorithm that can construct an approximately load-balanced DAG and dynamically configure the DAG to achieve high network utility.;Since maxmin fairness is also widely used in the literature and requires a different solution approach, we further explore the problem of computing a maxmin fair rate assignment and the associated routing paths in rechargeable sensor networks. We first show that constructing a data collection tree with the highest optimal maxmin fair rate assignment is NP-hard. Then, we propose a fast distributed algorithm that can jointly compute a near optimal maxmin rate assignment and the associated routing paths when the detailed recharging profile is known. We conduct large scale simulations with real solar radiation measurements from the National Renewable Energy Laboratory. The results show that our algorithm is close to the optimum.;Besides data collection, data dissemination is also an important feature of sensor networks as software may require an update to address unforeseen challenges imposed by the environment or the introduction of new user requirements. However, data dissemination can be a difficult task in perpetual sensor networks because the battery levels of sensor nodes could be low after operating for a long period of time and sensor's recharging capability is extremely dynamic. Since none of the existing data dissemination protocols consider sensors' recharging capability, they can either fail to deliver the data reliably or incur a high latency. To address this problem, we propose a new data dissemination protocol that is aware of the latency incurred by both recharging and interference. Using extensive simulations, we show that the proposed protocol can achieve lower latency when the recharging rates of the sensors are low.
机译:传感器平台的最新发展使传感器能够从环境中收集各种形式的可再生能源,例如太阳能,风能,热能和振动。尽管这可以延长传感器的使用寿命,但传感器节点的时变和不同的充电速率带来了新的挑战。为了确保没有传感器用尽能量,路由路径和数据收集速率必须适应传感器的充电能力。关于传感器网络中的路由和数据收集的先前工作集中在静态资源上。因此,它们不能在这里应用。本文的目的是设计使充电传感器网络能够持久运行的技术和协议。在本文中,我们首先提出了一种自适应数据收集框架,该框架通过在存在可再生能源的情况下通过计算比例公平的费率分配来优化网络效用。能源。该框架包含三种算法。第一种算法称为QuickFix,当基础路由结构是给定的DAG时,传感器节点可以根据一个时期内的短期平均补充率快速调整其采样率和路由路径。为了处理某个时期内充电率的变化,采用了一种称为SnapIt的局部能量管理算法。 SnapIt算法可动态调整由QuickFix算法计算出的采样率,从而可以将传感器的电池保持在目标水平,从而确保网络永久运行。为了进一步处理底层DAG路由结构未知的情况,我们提出了一种启发式算法,该算法可以构建近似负载平衡的DAG并动态配置DAG以实现较高的网络实用性。因为maxmin公平性也广泛用于文献并需要不同的解决方案,我们将进一步探讨在可充电传感器网络中计算最大最小公平速率分配和相关路由路径的问题。我们首先表明,构造具有最高最佳最大最小公平速率分配的数据收集树是NP-hard。然后,我们提出了一种快速分布式算法,当已知详细的充电配置文件时,该算法可以联合计算接近最佳的最大最小速率分配和相关的路由路径。我们使用国家可再生能源实验室的真实太阳辐射测量值进行大规模模拟。结果表明我们的算法已接近最优。除数据收集外,数据分发也是传感器网络的重要功能,因为软件可能需要更新以应对环境或引入新用户要求带来的不可预见的挑战。但是,在永久的传感器网络中,数据分发可能是一项艰巨的任务,因为长时间运行后,传感器节点的电池电量可能会很低,并且传感器的充电能力非常动态。由于现有的数据分发协议都没有考虑传感器的充电能力,因此它们要么无法可靠地传递数据,要么会导致高延迟。为了解决这个问题,我们提出了一种新的数据分发协议,该协议了解充电和干扰所引起的等待时间。使用大量的模拟,我们表明,当传感器的充电速率较低时,所提出的协议可以实现较低的延迟。

著录项

  • 作者

    Liu, Ren-Shiou.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Alternative Energy.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号