首页> 外文学位 >Iterative Methods for High Precision Motion Control with Application to a Wafer Scanner System.
【24h】

Iterative Methods for High Precision Motion Control with Application to a Wafer Scanner System.

机译:应用于晶圆扫描仪系统的高精度运动控制的迭代方法。

获取原文
获取原文并翻译 | 示例

摘要

Advances in photolithography are one of the key driving factors in the continuing expansion in capacity and decrease in cost of semiconductors. Extending this trend into the future necessitates the development of next-generation lithography technologies in order to overcome the fundamental challenges of improving critical dimension and overlay control, and lowering the total cost-of-ownership. As feature sizes become smaller and smaller, performance requirements for wafer scanner machines will become more stringent; with regards to motion control, requirements for the wafer stage include sub-nanometer positioning precision under high scan velocities and accelerations. Advanced control algorithms are needed to meet these requirements in the face of disturbances such as vibrations, noise, force ripple and friction, as well as model uncertainty.;This dissertation focuses on using the repetitiveness of the stage's motion in the photolithography process to improve control precision. Similar to many manufacturing processes, the step-and-scan motion used to expose a wafer is very repetitive, on a die-to-die and also wafer-to-wafer level. By using data gathered from past runs, the control effort for future runs may be improved, thereby exploiting the repetitiveness of the process to increase control precision.;In this research, iterative learning control (ILC) and iterative feedback tuning (IFT) were applied to reduce tracking error of the wafer stage. In ILC, a feedforward control signal for the system is incrementally adjusted to achieve better tracking performance using error signals from previous runs. ILC is an attractive method for high-precision control because of its simplicity and data-based nature. In this research, ILC algorithm design specifically for attenuating high frequency vibrations is investigated. Through careful design of the ILC update law, fast learning convergence and small final error is achieved. One drawback of ILC is that a feedforward signal learned through ILC is only applicable to the training trajectory; learning must be restarted when the trajectory is changed. A method is presented for making ILC results applicable to any trajectory within a class of scan trajectories; this is accomplished by using ILC as a training method for feedforward signal patterns. In IFT, controller parameters are fine-tuned incrementally using only data collected in experimental runs. IFT is applied to tune fixed-structure feedforward, feedback, and force-ripple compensator controllers. The performance of IFT is also compared with ILC in the context of iterative methods for designing feedforward control. All results are verified through computer simulations and experiments done on a wafer stage testbed system.
机译:光刻技术的进步是半导体容量不断扩大和半导体成本下降的关键驱动因素之一。为了将这种趋势扩展到未来,有必要开发下一代光刻技术,以克服改善关键尺寸和覆盖控制以及降低总拥有成本的根本挑战。随着特征尺寸变得越来越小,对晶片扫描仪机器的性能要求将变得更加严格。关于运动控制,对晶片台的要求包括在高扫描速度和加速度下的亚纳米定位精度。面对振动,噪声,力波动和摩擦以及模型不确定性等干扰时,需要先进的控制算法来满足这些要求。本论文着重于在光刻工艺中利用工作台的重复性来改善控制精确。与许多制造工艺类似,在晶片对晶片以及晶片与晶片之间,用于曝光晶片的步进扫描运动非常重复。通过使用从过去运行收集的数据,可以改善对未来运行的控制工作量,从而利用过程的重复性来提高控制精度。在本研究中,应用了迭代学习控制(ILC)和迭代反馈调整(IFT)以减少晶片台的跟踪误差。在ILC中,使用来自先前运行的错误信号,逐步调整系统的前馈控制信号,以实现更好的跟踪性能。由于ILC具有简单性和基于数据的特性,因此它是用于高精度控制的一种有吸引力的方法。在这项研究中,研究了专门用于衰减高频振动的ILC算法设计。通过精心设计的ILC更新法则,可以实现快速学习收敛和较小的最终错误。 ILC的一个缺点是,通过ILC学习的前馈信号仅适用于训练轨迹。改变轨迹时必须重新开始学习。提出了一种使ILC结果适用于一类扫描轨迹内的任何轨迹的方法。这可以通过使用ILC作为前馈信号模式的训练方法来完成。在IFT中,仅使用实验运行中收集的数据对控制器参数进行微调。 IFT用于调整固定结构的前馈,反馈和力纹波补偿器控制器。在设计前馈控制的迭代方法中,还将IFT的性能与ILC进行了比较。所有结果均通过在晶圆台测试台系统上进行的计算机仿真和实验验证。

著录项

  • 作者

    Stearns, Hoday Margaret.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号