首页> 外文学位 >Reconfiguration and bifurcation in flight controls.
【24h】

Reconfiguration and bifurcation in flight controls.

机译:飞行控制中的重新配置和分叉。

获取原文
获取原文并翻译 | 示例

摘要

Numerous aviation accidents have been caused by stuck control surfaces. In most cases the impaired aircraft has sufficient redundancy to reconfigure the flight. However, the actions that the pilot needs to make could be counter intuitive, demanding and complicated. This is due to the drastic changes in the system's dynamics that are caused by the nonlinearities, the loss of control authority and the disturbance imposed by the stuck surface. The reconfiguration of the flight laws will alleviate the work load on the crew and give them a better leeway to safely land the aircraft. The fault tolerant scheme that is adopted here is a multiple model one with a finite number of reconfigured controllers. Each reconfigured controller consists of a nonlinear output regulator and a constant gain nonlinear observer. The guidelines available for designing the nominal stabilizer are not appropriate for the reconfigured systems.; The ability of the control law to reconfigure the aircraft is limited by saturation of the control surfaces, bifurcation points and stability limits. Identifying and characterizing these limitations is the first step in systematically improving the fault tolerant design. The computational results were obtained using a continuation method based on the Newton-Raphson and Newton-Raphson-Seydel methods. The numerous subtleties in employing these tools, when bifurcation points are clustered together, when many eigenvalues are near the origin or when the eigenvalues nearest the origin are complex, are addressed in this work. The reconfigured controller design for all possible single surface failures and the bifurcation analysis of the nominal and reconfigured systems was carried out on a real aircraft, namely the F-16. This was facilitated by the development of a unique, high fidelity, six degree of freedom, F-16 model.
机译:操纵面被卡住已造成许多航空事故。在大多数情况下,受损飞机具有足够的冗余性以重新配置飞行。但是,飞行员需要采取的行动可能与直觉,要求和复杂相反。这是由于非线性引起的系统动力学的急剧变化,控制权的丧失以及卡住的表面造成的干扰。重新调整飞行规则将减轻机组人员的工作负担,并为他们提供更好的腾出空间来安全降落飞机。此处采用的容错方案是一种具有有限数量的重新配置控制器的多重模型。每个重新配置的控制器均包含一个非线性输出调节器和一个恒定增益非线性观测器。设计标称稳定器的指南不适用于重新配置的系统。控制律重新配置飞机的能力受到控制面的饱和度,分叉点和稳定性极限的限制。识别和表征这些限制是系统改进容错设计的第一步。使用基于牛顿-拉夫森法和牛顿-拉夫森-塞德尔法的连续方法获得计算结果。当分叉点聚集在一起,许多特征值在原点附近或当最接近原点的特征值复杂时,使用这些工具的许多微妙之处将在本文中解决。对所有可能的单表面故障进行了重新配置的控制器设计,并对标称系统和重新配置的系统进行了分叉分析,这是在实际飞机(即F-16)上进行的。独特的,高保真度,六自由度的F-16模型的开发促进了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号