首页> 外文学位 >In-flight performance optimization for rotorcraft with redundant controls.
【24h】

In-flight performance optimization for rotorcraft with redundant controls.

机译:具有冗余控制的旋翼飞机的飞行中性能优化。

获取原文
获取原文并翻译 | 示例

摘要

A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities.;A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization.;A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers.;Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance.;The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.
机译:由于主旋翼的限制,例如在前进侧的可压缩性问题或在后退侧的失速问题,常规的直升机在高速下具有性能上的限制。已经建议辅助升力和推力分量通过减少主旋翼上的载荷来实质上改善直升机的性能。这种配置称为复合旋翼飞机。旋翼速度也可以改变以提高直升机性能。除了改进的性能外,复合旋翼飞机和可变RPM还可以提供更大程度的控制冗余。这种额外的冗余提供了进一步提高性能和处理质量的机会。飞行控制系统旨在对复合旋翼飞机上的冗余控制执行器进行飞行中优化,以最大程度地减少所需的功率并扩展范围。使用GENHEL模型在仿真中测试了“最优飞行”(FTO)控制律。开发了UH-60的模型,带有升翼和矢量推力螺旋桨的UH-60A的复合版本以及带有升翼和螺旋桨的UH-60A的通用复合版本,并进行了仿真测试。实现了模型跟随动态反转控制器,用于滚动,俯仰,偏航,升沉和转子RPM的内环控制。外环控制器在优化过程中调节空速和飞行路径。黄金分割搜索方法用于在常规直升机上找到最佳转子RPM,其中传统的冗余控制效应器是转子RPM。 FTO通过在固定翼飞机的冗余控制上执行低频扫频而建立在Gilyard的自适应性能优化(APO)方法的基础上。使用基于APO方法的方法来优化带有多个冗余控制效应器的复合旋翼飞机的微调。该控制器可用于通过飞行测试或模拟来优化转子RPM和复合控制执行器,以建立时间表。该方法已扩展为搜索二维控制空间。仿真结果证明了通过优化稳定器偏转和空速设定点来最大化航程的能力。另一组结果通过优化总体俯仰和稳定器偏转来最小化高速飞行所需的动力。结果表明,控制律有效地保持了飞行状态,而FTO方法有效地改善了性能。优化表明,当调节海拔的控制规律将集体控制推向极限时,可能会出现问题。因此,对控制律进行了修改,以在集合体保持固定或用作优化变量的情况下,利用螺旋桨的螺距和攻角来调节空速和高度。应用动态调整限制避免算法来避免优化操作期间其他轴的控制饱和。;将范围和功率优化FTO仿真与调整解决方案的全面扫描进行了比较,并且显示FTO优化在优化时达到了最佳效果是有效且可靠的到两个冗余控件。事实证明,使用冗余控件有助于提高性能。搜索方法需要近25分钟的模拟飞行才能完成优化。优化操作本身有时可以将所需的功率驱动到较高的值,因此施加了功率限制以限制搜索,以避免出现功率比初始调整状态高出5%以上的情况。通过此修改,优化操作所需的时间减少到21分钟,而最佳功率值没有任何重大变化。

著录项

  • 作者

    Ozdemir, Gurbuz Taha.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号