首页> 外文学位 >Radiative transport in plant canopies: Forward and inverse problem for UAV applications.
【24h】

Radiative transport in plant canopies: Forward and inverse problem for UAV applications.

机译:植物冠层中的辐射运输:无人机应用的正向和反向问题。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation deals with modeling the radiative regime in vegetation canopies and the possible remote sensing applications derived by solving the forward and inverse canopy transport equation. The aim of the research is to develop a methodology (called "end-to-end problem solution") that, starting from first principles describing the interaction between light and vegetation, constructs, as the final product, a tool that analyzes remote sensing data for precision agriculture (ripeness prediction). The procedure begins by defining the equations that describe the transport of photons inside the leaf and within the canopy. The resulting integro-differential equations are numerically integrated by adapting the conventional discrete-ordinate methods to compute the reflectance at the top of the canopy. The canopy transport equation is also analyzed to explore its spectral properties. The goal here is to apply Case's method to determine eigenvalues and eigenfunctions and to prove completeness.; A model inversion is attempted by using neural network algorithms. Using input-outputs generated by running the forward model, a neural network is trained to learn the inverse map. The model-based neural network represents the end product of the overall procedure.; During Oct 2002, an Unmanned Aerial Vehicles (UAVs) equipped with a camera system, flew over Kauai to take images of coffee field plantations. Our goal is to predict the amount of ripe coffee cherries for optimal harvesting. The Leaf-Canopy model was modified to include cherries as absorbing and scattering elements and two classes of neural networks were trained on the model to learn the relationship between reflectance and percentage of ripe, over-ripe and under-ripe cherries. The neural networks are interfaced with images coming from Kauai to predict ripeness percentage. Both ground and airborne images are considered. The latter were taken from the on-board Helios UAV camera system flying over the Kauai coffee field. The results are compared against hand counts and parchment data to evaluate the network performances on real applications. In ground images, the error is always less than 11%. In airborne image, the error bound is 20%.; The results are certainly adequate and show the tremendous potential of the methodology.
机译:本文研究了植被冠层的辐射状况,并通过求解冠层的前向和逆向运移方程推导了可能的遥感应用。该研究的目的是开发一种方法(称为“端到端问题解决方案”),该方法从描述光与植被之间相互作用的最初原理开始,将分析遥感数据的工具构造为最终产品。用于精密农业(成熟度预测)。该过程首先定义方程式,这些方程式描述了叶片内部和冠层内部的光子传输。通过采用常规的离散坐标方法来计算所得的积分微分方程,以计算冠层顶部的反射率。还对冠层传输方程进行了分析,以探索其光谱特性。这里的目标是应用Case的方法来确定特征值和特征函数并证明完整性。通过使用神经网络算法尝试进行模型反演。使用通过运行正向模型生成的输入输出,训练了神经网络以学习逆映射。基于模型的神经网络代表整个过程的最终产品。 2002年10月,配备摄像头系统的无人飞行器(UAV)飞越考艾岛,拍摄咖啡种植园的图像。我们的目标是预测成熟咖啡樱桃的量以达到最佳收成。修改了Leaf-Canopy模型,使其包含樱桃作为吸收和散射元素,并在该模型上训练了两类神经网络,以了解反射率与成熟,成熟和未成熟樱桃百分比之间的关系。神经网络与来自考艾岛的图像进行交互,以预测成熟度百分比。地面图像和空中图像均被考虑。后者是从在考艾岛咖啡场上空飞行的机载Helios无人机摄像头系统拍摄的。将结果与手计数和羊皮纸数据进行比较,以评估实际应用程序上的网络性能。在地面图像中,误差始终小于11%。在机载图像中,误差范围为20%。结果肯定是足够的,并显示了该方法的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号