首页> 外文学位 >A nanoscale composite material for enhanced damage tolerance in micro and nano-electro-mechanical systems and structures.
【24h】

A nanoscale composite material for enhanced damage tolerance in micro and nano-electro-mechanical systems and structures.

机译:一种纳米级复合材料,用于增强微和纳米机电系统和结构的损伤容限。

获取原文
获取原文并翻译 | 示例

摘要

A laminar composite material with alternating layers of residual compressive and tensile stresses has previously been shown to offer enhanced tolerance to fracture in macroscale ceramic components. In this work, a similarly damage-tolerant composite material with micro and nano-scale laminae has been developed as an alternative to monolithic silicon for the fabrication of Micro-Electro-Mechanical Systems (MEMS).; The motivation for this work arises out of the repeated mechanical failure of prototype MEMS-based microscale surgical tools when subject to shock or impact loads, in spite of rigorous design features for minimizing such failures. This behavior can be attributed to the low fracture toughness of silicon and is a general characteristic of brittle materials, particular ceramics. Fittingly, the solution proposed here is inspired by earlier research in the ceramics community.; Structures of a Silicon and Silicon Oxide laminar composite were fabricated with micrometer range laminae widths. This represents a model, scalable material system due to the covalent bonded interface between the laminae materials. Tests performed on these cantilevers to measure their fracture properties, showed higher minimum fracture stresses displayed by composite cantilevers in comparison with identical monolithic silicon structures. Moreover, these minima match well with the "threshold" stress, a lower bound on the fracture stress of this composite predicted from theoretical considerations.; A more complete model for the fracture properties of this material was also developed, removing an important assumption of the existing theory, which limits its application to some material systems. The updated theory models the effect of the laminar structure of the composite as an effective anisotropy in its properties with regard to stress fields around any cracks in the material. The predictions from this model are shown to better replicate results from finite element simulations of laminate geometries than the original model.; Finally, the laminae widths in the composite are reduced to the sub-100nanometer range. A novel process flow for the fabrication of composite structures with these size scales is developed, which has applications for size reductions of microscale devices in general. Fracture tests performed on these "nano-composites" shows their effectiveness in preventing failure due to pre-existing flaws in structures.
机译:先前已显示出具有交替的残余压缩应力和拉伸应力层的层状复合材料可增强宏观陶瓷部件的断裂耐受性。在这项工作中,已经开发出一种具有微米和纳米级薄片的类似的耐损伤的复合材料,作为制造微机电系统(MEMS)的单片硅的替代品。尽管有严格的设计功能可最大程度地减少此类故障,但当受到冲击或冲击载荷时,基于原型的基于MEMS的微型手术工具会反复发生机械故障,因此产生了进行此项工作的动机。这种行为可归因于硅的低断裂韧性,并且是脆性材料,特别是陶瓷的一般特征。合适地,这里提出的解决方案受到陶瓷界早期研究的启发。硅和氧化硅层状复合材料的结构以微米范围的层状宽度制造。由于层状材料之间的共价键合界面,这代表了一种可扩展的模型材料系统。在这些悬臂上进行的测量其断裂性能的测试显示,与相同的整体式硅结构相比,复合悬臂显示出更高的最小断裂应力。而且,这些最小值与“阈值”应力很好地匹配,“阈值”应力是该复合材料断裂应力的下限,从理论上可以预测。还针对该材料的断裂特性开发了更完整的模型,从而消除了现有理论的重要假设,这限制了其在某些材料系统中的应用。更新后的理论将复合材料的层状结构的效应建模为材料属性中有效的各向异性,该各向异性是关于材料中任何裂纹周围的应力场的。结果表明,与原始模型相比,该模型的预测可以更好地复制层压板几何形状的有限元模拟结果。最终,复合材料中的薄层宽度减小到100纳米以下。开发了一种用于制造具有这些尺寸尺度的复合结构的新颖工艺流程,该工艺流程通常可用于减小微型器件的尺寸。对这些“纳米复合材料”进行的断裂测试表明,它们可有效防止由于结构中预先存在的缺陷而导致的失效。

著录项

  • 作者

    Paranjpye, Alok.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Materials Science.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号