首页> 外文学位 >Exotic quantum magnetism and superfluidity in optical lattices.
【24h】

Exotic quantum magnetism and superfluidity in optical lattices.

机译:光学晶格中的外来量子磁性和超流动性。

获取原文
获取原文并翻译 | 示例

摘要

The progress of ultracold atoms renders numerous possibilities to investigate exotic magnetism and superfluidity, which are rarely observed in solid state systems. In this thesis, we will introduce two novel physical descriptions: "frustrated Cooper pairing" and "large-hyperfine spin physics". Geometric frustration in quantum magnetism refers to which magnetic interactions on different bonds cannot be simultaneously minimized, and usually Cooper pairing favors uniform phases among different lattice sites. Here, we introduce "frustration" in Cooper pairing in a fermionic p-orbital model. By mean-field calculations, we show that the system exhibits behavior analogous to frustrated magnetism, and an unconventional supersolid state with the f-wave symmetry.;Next, we introduce large-spin physics. In usual condensed matter systems, large spin is not intriguing because large values of spin suppress quantum fluctuations. In contrast, in ultracold fermion systems, large-hyperfine spin enhances quantum fluctuations and brings exotic quantum magnetism. Here the simplest large-spin fermionic system, a spin-3/2 exchange system is proposed, which can be characterized by an Sp(4)/SO(5) symmetry. In one dimension, the ground states exhibit either a dimerized state with a finite spin gap or a gapless spin liquid state by means of the density matrix renormalization group method. In the latter case, the spin-spin correlation functions are identified to have 4-site periodicities, which behaves similarly to the SU(4) chain. In two dimension, we infer that there exist three competing phases: Neel ordering, columnar dimerization and 2 x 2 plaquette formation, in the thermodynamic limit by exact diagonalization calculation on small sizes.;Finally we perform the projector Quantum Monte Carlo method to study another large-spin system: the half-filled SU(N ) Hubbard model. We show that at half-filling there is no sign problem such that our simulations are accurate. By finite size scaling, it is clearly found that the magnetic Neel ordering can exist not only for N = 2 but also in the N = 4 case at strong interactions. For N≥6 or N = 4 at small U, the numerical results do not have any prominent signal that the long-range ordering exists in the thermodynamic limit. Due to strong finite size effects and finite numerical accuracy, however, we are unable to make any conclusion to identify the physics in the regimes.
机译:超冷原子的发展为研究奇特的磁性和超流动性提供了许多可能性,这在固态系统中很少见到。在本文中,我们将介绍两个新颖的物理描述:“沮丧的库珀配对”和“大超精细自旋物理学”。量子磁性中的几何受挫是指无法同时最小化不同键上的磁性相互作用,并且通常库珀对有利于不同晶格位点之间的均匀相。在这里,我们介绍了费米子p轨道模型在库珀配对中的“挫折感”。通过平均场计算,我们证明了该系统表现出类似于受挫的磁性的行为,以及具有f波对称性的非常规超固态。接下来,我们介绍了大自旋物理学。在通常的凝聚态系统中,大的自旋并不吸引人,因为大的自旋值抑制了量子涨落。相比之下,在超冷费米子系统中,大的超细自旋会增强量子涨落并带来奇特的量子磁性。在此,提出了最简单的大自旋费米电子系统,即自旋3/2交换系统,该系统可以以Sp(4)/ SO(5)对称性为特征。在一个维度上,借助密度矩阵重新归一化群方法,基态呈现具有有限旋转间隙的二聚态或无间隙旋转液体态。在后一种情况下,自旋-自旋相关函数被确定为具有4位周期性,其行为类似于SU(4)链。在二维上,通过对小尺寸的精确对角化计算,我们推断出在热力学极限中存在三个竞争阶段:Neel有序,柱状二聚化和2 x 2球团状形成;最后,我们使用投影机Quantum Monte Carlo方法研究了另一个大旋转系统:半填充SU(N)Hubbard模型。我们证明了在半填充时没有符号问题,因此我们的模拟是准确的。通过有限的尺寸缩放,可以清楚地发现,不仅在N = 2的情况下,而且在强相互作用的N = 4的情况下,都可以存在磁性Neel排序。对于在小U处N≥6或N = 4的情况,数值结果没有明显的信号表明在热力学极限中存在长程有序。但是,由于强大的有限尺寸效应和有限的数值精确度,我们无法得出任何结论来确定该制度下的物理学。

著录项

  • 作者

    Hung, Hsiang-Hsuan.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Physics Low Temperature.;Physics Quantum.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号