首页> 外文学位 >Simulating heart valve mechanical behavior for planning surgical repair.
【24h】

Simulating heart valve mechanical behavior for planning surgical repair.

机译:模拟心脏瓣膜机械行为以计划外科手术修复。

获取原文
获取原文并翻译 | 示例

摘要

Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical planning could facilitate repair, but current finite element (FE) studies are prohibitively slow for rapid, clinically-oriented simulations. An anisotropic, nonlinear mass-spring (M-S) model is presented to approximate the membrane behavior of heart valve leaflet tissue, and it is coupled with a fast method for simulating valve dynamics. An efficient FE model is also described for simulating valve leaflets. The speed-accuracy tradeoff between the FE and M-S models is quantified so that the strength of each method can be leveraged where appropriate. The FE model is applied to study a generalized aortic valve repair technique that incorporates graft material into the native valve, where the graft has significantly different mechanical properties than native leaflets. Results show that the graft must be larger than the native leaflets and predicts optimal graft height and width. The M-S method is applied to fully image-based models of the mitral valve to simulate valve closure and loading for fast applications like intraoperative surgical planning. This model is used to simulate a technique used in valve repair and to assess the importance of chordae in determining the closed configuration of the valve. Direct image-based comparison was used for validation. Results of M-S model simulations showed that it is possible to build fully image-based models of the mitral valve and to rapidly simulate closure with sub-millimeter accuracy. Chordae, which are presently difficult to image, are shown to be strong determinants of the closed valve shape.
机译:心脏瓣膜功能复杂,难以进行手术修复。基于模拟的外科手术计划可能有助于修复,但是对于快速,面向临床的模拟,当前的有限元(FE)研究进展缓慢。提出了一种各向异性的非线性质量弹簧(M-S)模型来近似心脏瓣膜小叶组织的膜行为,并与模拟瓣膜动力学的快速方法相结合。还描述了用于模拟瓣膜小叶的有效有限元模型。 FE模型和M-S模型之间的速度精度权衡得到量化,因此可以在适当的情况下利用每种方法的强度。 FE模型用于研究广义的主动脉瓣修复技术,该技术将移植物材料结合到天然瓣膜中,其中移植物的机械性能与天然小叶明显不同。结果表明,移植物必须大于天然小叶,并能预测最佳的移植物高度和宽度。 M-S方法应用于二尖瓣的完全基于图像的模型,以模拟瓣膜关闭和负荷,以实现术中外科手术计划等快速应用。该模型用于模拟阀门维修中使用的技术,并评估腱索在确定阀门关闭配置中的重要性。基于图像的直接比较用于验证。 M-S模型模拟的结果表明,可以建立完全基于图像的二尖瓣模型并以亚毫米精度快速模拟闭合。目前很难成像的和弦显示出是关闭阀门形状的重要决定因素。

著录项

  • 作者

    Hammer, Peter E.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Biomedical.;Biophysics Biomechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号