首页> 外文学位 >Multi-length scale modeling of the high-pressure, large-strain, high-strain-rate response of soda-lime glass.
【24h】

Multi-length scale modeling of the high-pressure, large-strain, high-strain-rate response of soda-lime glass.

机译:钠钙玻璃的高压,大应变,高应变速率响应的多尺度模型。

获取原文
获取原文并翻译 | 示例

摘要

Development of new transparent armor systems is essential for the protection of the current and future US armed forces, especially in light of the recent military operations The Operation Iraqi Freedom in Iraq and The Operation Enduring Freedom in Afghanistan. These conflicts have introduced a new military theater without a well-defined battle front and new types of threats (e.g. improvised explosive devices, IEDs). Development and modeling of new transparent armor systems for use in numerous applications from vehicle windows to face shields is a current area of thrust aimed at addressing the shortcomings of existing systems in order to better protect US soldiers and align with the military's goal of becoming more mobile, deployable, and sustainable.;This dissertation is focused predominately on the computational modeling of transparent armor materials and structures. Glass remains the dominant constituent in many modern transparent armor systems for a number of performance and manufacturing related reasons and thus is the material of focus in the present work. The present work is concerned with the development and further enhancement of a continuum-level, physically-based, high strain-rate, large-strain, high-pressure mechanical material model for soda-lime (and borosilicate) glass. The model is being developed in attempt to capture the complex stochastic, pre-existing flaw-controlled damage nature of glass under blast and impact conditions and do so in a computationally efficient manner. Numerous finite element simulations were carried out using the computational code ABAQUS/Explicit to assess the utility of the model under physically realistic ballistic loading conditions, including multi-hit impact scenarios. Further enhancements of the glass material model are made with the inclusion of the following: (i) differentiation of the mechanical properties of the so-called air-side and tin-side of glass plates manufactured using the float glass process; and (ii) a damage tensor to produce an orthotropic macro-cracked material. In addition a multi-length scale modeling approach for glass is taken to elucidate phenomena at different length scales (e.g. glass irreversible densification, shock response, etc.) with the ultimate objective of enhancing the efficacy of the current continuum-level material model. The irreversible densification of glass under ballistic (shock) loading conditions is investigated at multiple length scales (atomistic-level and continuum-level) in order to understand its effect on the ballistic penetration resistance of glass. The findings related to the material shock response and irreversible densification of glass were subsequently included in the continuum-level glass material model equation of state to further increase its efficacy.;The results from the various test scenarios and modifications to the continuum-level glass material models reveal that: (a) transient non-linear dynamics computational analyses, when utilizing the glass material model, have demonstrated to be a useful tool in understanding the multi-hit ballistic-protection performance of laminated glass/polycarbonate transparent armor systems. The loss of the ballistic-protection performance of the armor caused by a sequence of closely spaced bullet impacts has been observed and the results of these analyses are validated against their experimental counterparts; (b) while it was expected (based on quasi-static mechanical testing result) that orienting the borofloat tin-side as a three-layer laminate strike face would enhance its ballistic protection performance, experimental findings did not support this conjecture. Computational simulations of the laminate impact established the capability of the borosilicate glass material model to capture the prominent experimentally observed damage modes and the measured V50, reconfirming the experimental findings; and (c) a 2-4% (shock strength-dependent) irreversible density increase in glass is capture computationally at multiple lengths scales. Subsequent modifications of the continuum-level material model for glass to include the effect of irreversible-densification resulted in minor improvements in the ballistic-penetration resistance of glass and only for high projectile initial velocities.
机译:开发新的透明装甲系统对于保护当前和未来的美国武装部队至关重要,尤其是考虑到最近的军事行动“伊拉克的伊拉克自由行动”和“阿富汗的持久自由行动”。这些冲突造成了一个新的军事战场,没有明确的战线和新型威胁(例如简易爆炸装置,简易爆炸装置)。新的透明装甲系统的开发和建模可用于从车窗到面罩的多种应用,这是当前的重点领域,旨在解决现有系统的缺点,以便更好地保护美军并与军方变得更加机动的目标保持一致,可部署和可持续的。;本文主要研究透明装甲材料和结构的计算建模。由于许多性能和制造相关的原因,玻璃仍是许多现代透明装甲系统中的主要成分,因此是本工作的重点材料。本工作涉及钠钙玻璃(和硼硅酸盐玻璃)的连续水平,基于物理的,高应变率,大应变,高压机械材料模型的开发和进一步增强。正在开发该模型,以试图捕获在爆炸和冲击条件下玻璃的复杂的,随机存在的,缺陷控制的损伤性质,并以计算有效的方式进行。使用计算代码ABAQUS / Explicit进行了许多有限元模拟,以评估该模型在物理逼真的弹道载荷条件下(包括多次撞击的情况)的实用性。玻璃材料模型的进一步增强包括以下内容:(i)区分使用浮法玻璃工艺制造的玻璃板的所谓空气侧和锡侧的机械性能; (ii)破坏张量以产生正交各向异性的宏观裂纹材料。另外,采用了玻璃的多长度尺度建模方法来阐明不同长度尺度下的现象(例如,玻璃不可逆的致密化,冲击响应等),其最终目的是增强当前连续体级材料模型的功效。为了研究玻璃在弹道(冲击)载荷条件下的不可逆致密化,需要在多个长度尺度(原子级和连续体级)上进行研究,以了解其对玻璃的防弹穿透性的影响。随后将与玻璃的材料冲击响应和不可逆致密化有关的发现包括在连续体级玻璃材料模型状态方程中,以进一步提高其功效。;来自各种测试方案的结果以及对连续体级玻璃材料的修改这些模型表明:(a)当利用玻璃材料模型进行瞬态非线性动力学计算分析时,已被证明是理解多层玻璃/聚碳酸酯透明装甲系统的多次冲击防弹性能的有用工具。观察到由一系列间隔很近的子弹撞击造成的装甲防弹性能的损失,这些分析的结果已与它们的实验同行进行了验证。 (b)预期(基于准静态机械测试结果)将硼浮铁锡面定向为三层层压板击打面会增强其防弹性能,但实验结果并不支持这一推测。层压板冲击的计算模拟建立了硼硅酸盐玻璃材料模型捕获实验观察到的突出损伤模式和测得的V50的能力,从而再次证实了实验结果; (c)在多个长度尺度上计算得出玻璃中2-4%(取决于冲击强度)的不可逆密度增加。随后对玻璃的连续体材料模型进行了修改,以包括不可逆的致密化作用,从而导致玻璃的防弹穿透性能略有改善,并且仅对于高射弹初始速度有所改善。

著录项

  • 作者

    Bell, William Cameron.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号