首页> 外文学位 >Enhanced processibility of conductive polymers via solid-state oxidative cross-linking.
【24h】

Enhanced processibility of conductive polymers via solid-state oxidative cross-linking.

机译:通过固态氧化交联提高了导电聚合物的可加工性。

获取原文
获取原文并翻译 | 示例

摘要

Intrinsically conducting polymers (ICP) have received great attention due to their potential use in applications such as electrochromic devices, protective coatings, organic light emitting diodes (LED), solar cell, energy storage batteries, volatile gas sensors, nonlinear optics, charge dissipating films, and molecular-scale electronics. Typically ICPs are prepared from monomer solution by chemical/electrochemical means and the polymers thus produced are intractable possessing processing difficulty.; In this work, a novel technique, "Solid-state Oxidative Crosslinking (SOC)", addresses making electrochemical polymerization more practical and provides a way to make ICPs in different form factors, is demonstrated. Utilizing this technique, ICPs were prepared via conversion of their insulating precursor polymers in the solid-state to conducting polymers in nearly quantitative yield. Conventional solution-processing techniques can be used to process the precursor polymers and the SOC conversion to ICPs is performed without perturbation of the precursor polymer shapes. Furthermore, this SOC technique can be used to precisely control the conversion of insulating polymers to conducting polymers in micron and nano-scale.; Direct writing of intrinsically conducting polymers in nanoscale regimes is shown using "Electrochemical Oxidative Nanolithography (ECON)", SOC coupled with electrochemical atomic force microscopy (ECAFM). Conducting polymer nanolines of 45 nm width were successfully written via contact and tapping mode. The line width was successfully controlled between 45 nm to 240 nm depending upon the writing speed, writing mode, and applied potential. This technique was found to be >1,500 times faster than other existing atomic force microscopy (AFM) based lithographic techniques known to produce nanometer sized conducting polymer lines. Furthermore, in ECON, no restriction in the choice of substrate was found thus far, envisioning the feasibility to the application to plastic nanoelectronics.; A simple method of preparing conductive polymer nanofibers was demonstrated via electrospinning of precursor polymer solutions followed by SOC. Polythiophene nanofibers having diameter of 90--180 nm were successfully obtained using this technique and no significant perturbation of the nanofibers morphology during SOC was found. Furthermore, a large red shift in the absorption spectra of the polythiophene nanofibers compared to the corresponding films suggests a possible increase in the effective conjugation length of the conjugated thiophene polymers due to extension of the precursor polymer chains during spinning.
机译:本征导电聚合物(ICP)由于其潜在用途而备受关注,例如电致变色器件,保护涂层,有机发光二极管(LED),太阳能电池,储能电池,挥发性气体传感器,非线性光学器件,电荷消散膜以及分子级电子学。通常,ICP是通过化学/电化学方法由单体溶液制备的,因此生产的聚合物难以加工,具有加工困难。在这项工作中,展示了一种新颖的技术“固态氧化交联(SOC)”,该技术致力于使电化学聚合更加实用,并提供了一种制造不同形状因数的ICP的方法。利用该技术,通过将固态的绝缘前驱体聚合物以接近定量的产率转化为导电聚合物来制备ICP。可以使用常规的溶液处理技术来处理前体聚合物,并且在不干扰前体聚合物形状的情况下,将SOC转化为ICP。此外,这种SOC技术可用于精确控制微米级和纳米级的绝缘聚合物向导电聚合物的转化。使用“电化学氧化纳米平版印刷术(ECON)”,SOC与电化学原子力显微镜(ECAFM)耦合显示了在纳米尺度范围内直接写入本征导电聚合物。通过接触和分接模式成功写入了45 nm宽的导电聚合物纳米线。根据写入速度,写入模式和施加电势,将线宽成功地控制在45 nm至240 nm之间。发现该技术比已知的可产生纳米级导电聚合物线的其他现有基于原子力显微镜(AFM)的光刻技术快1,500倍以上。此外,在ECON中,到目前为止,在基板的选择上没有发现任何限制,预见了其在塑料纳米电子学中的可行性。通过先驱体聚合物溶液的电纺丝,然后进行SOC,证明了一种制备导电聚合物纳米纤维的简单方法。使用该技术成功获得了直径为90--180 nm的聚噻吩纳米纤维,并且在SOC期间未发现纳米纤维形态的显着扰动。此外,与相应的膜相比,聚噻吩纳米纤维的吸收光谱中的大红移表明,由于纺丝过程中前体聚合物链的延长,共轭噻吩聚合物的有效共轭长度可能增加。

著录项

  • 作者

    Jang, Sung-Yeon.;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号