首页> 外文学位 >Enhanced electrochemical characteristics of lithium manganese oxide thin film cathodes for lithium-ion rechargeable microbatteries.
【24h】

Enhanced electrochemical characteristics of lithium manganese oxide thin film cathodes for lithium-ion rechargeable microbatteries.

机译:锂离子可充电微型电池用锂锰氧化物薄膜阴极的增强电化学特性。

获取原文
获取原文并翻译 | 示例

摘要

Spinel LiMn2O4 (average oxidation state of Mn = 3.5) thin film has been introduced for a promising cathode of thin film lithium-ion microbatteries because of its advantages over other cathodes. Thus, many research groups have been investigating the thin film lithium manganese oxide cathode using several different techniques but only a few of them achieved acceptable electrochemical properties required for a thin film cathode for 4 V region. However, for 3 V application the wide applications of LiMn2O 4 film as a cathode in rechargeable microbatteries have been restricted by electrochemically unfavorable facts such as capacity fade on cycling and poor rate capability at high rates. In this study, we examined the mechanisms responsible for capacity fade on cycling and rate capability of LiMn 2O4 thin film cathodes with the help of pulsed laser deposition (PLD) technique.; In an attempt to address these issues, a three-part experimental procedure has been designed to look at the effect of structure and compositions of the thin film cathodes on their electrochemical characteristics. First, the effect of growth temperature of the thin film cathodes has been investigated. Next, LiMn2O4 thin film cathodes doped with aluminum, which replaces Mn3+ in the spinet structure, have been synthesized and characterized as a function of the amount of aluminum substituted. Finally, ultraviolet radiation was added to a PLD system for in situ ultraviolet-assisted PLD (UVPLD) growth of cathode films. Through the addition of ultraviolet radiation, highly reactive oxygen species are generated which alter the oxygenation conditions and dynamically alter the films properties such as crystallinity and composition.; A variety of characterization techniques indicate that LiMn2O 4 thin film cathodes grown at 400∼500°C exhibit the optimized electrochemical characteristics in terms of capacity, capacity retention, and rate capability. Al-doped LiMn2O4 thin films show a more stable structure, leading to higher capacity retention with some sacrifice of discharge capacity and rate capability. Oxygen-rich spinel (LiMn2O4+delta, delta > 0) thin film cathodes produced by UVPLD result in very high capacity and better rechargeability but lower rate capability.
机译:尖晶石型LiMn2O4(平均氧化态Mn = 3.5)薄膜因其优于其他正极的优点而被引入作为薄膜锂离子微电池的理想正极。因此,许多研究小组已经在使用几种不同的技术来研究薄膜锂锰氧化物阴极,但只有少数几个达到了4 V区薄膜阴极所需的可接受的电化学性能。然而,对于3V应用,由于电化学不利的事实,例如循环时的容量衰减和高倍率下的不良倍率能力,限制了LiMn2O 4膜作为可再充电微型电池中的阴极的广泛应用。在这项研究中,我们借助脉冲激光沉积(PLD)技术检查了导致LiMn 2O4薄膜阴极循环容量衰减和速率能力的机制。为了解决这些问题,设计了一个三部分的实验程序来研究薄膜阴极的结构和组成对其电化学特性的影响。首先,已经研究了薄膜阴极的生长温度的影响。接下来,合成了铝掺杂的LiMn2O4薄膜阴极,该薄膜阴极替代了尖晶石结构中的Mn3 +,并表征了铝取代量的函数。最后,将紫外线辐射添加到PLD系统中,用于阴极膜的原位紫外线辅助PLD(UVPLD)生长。通过添加紫外线辐射,产生了高反应性的氧物质,这些氧物质改变了氧合条件并动态地改变了薄膜的性质,例如结晶度和组成。各种表征技术表明,在容量为400、500℃时生长的LiMn2O 4薄膜阴极在容量,容量保持率和倍率容量方面表现出最佳的电化学特性。铝掺杂的LiMn2O4薄膜显示出更稳定的结构,从而导致更高的容量保持率,同时牺牲了放电容量和倍率容量。由UVPLD生产的富氧尖晶石(LiMn2O4 + delta,delta> 0)薄膜阴极导致很高的容量和更好的充电率,但速率较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号