首页> 外文学位 >Linear and non-linear deformations of a wind turbine blade considering warping and all aeroelastic load couplings
【24h】

Linear and non-linear deformations of a wind turbine blade considering warping and all aeroelastic load couplings

机译:考虑翘曲和所有气动弹性载荷耦合的风力涡轮机叶片的线性和非线性变形

获取原文
获取原文并翻译 | 示例

摘要

The structural dynamics behavior of the blade of a horizontal axis wind turbine that reacts to the different components of the aerodynamic loading were studied by many researchers using different approaches and assumptions. In the present research, the author considered all the extensional, torsional and flexural loadings acting on the blade with their couplings, variable airfoil cross sections with warping effects, shear deflection, rotary inertia and with or without blade's pretwist for both the linear small deformation case and the nonlinear large deformation case. To the best knowledge of the author the simultaneous inclusion of all these factors has not been done before. The "assumed modes method" was used, in which displacements are assumed to be an expansion of products of time-step dependent constants and polynomial functions of x (where x is the coordinate along the length of the blade) that satisfy the boundary conditions at the fixed end where x=0 (hub of the blade) and at the free end where x=L (tip of the blade). The mass matrix, linear and nonlinear stiffness matrices and the load vector (function of time step) of the dynamic equations of motion are deduced from the Lagrange equations of motion that were derived step by step. The steps of the linear and nonlinear Newmark implicit iteration schemes used for solving the linear and nonlinear dynamic equations of motion respectively were explained in detail. Numerical implementation examples for both linear and nonlinear cases were demonstrated for a 14m long blade with and without pretwisting that has specific material and geometrical properties and a decreasing NACA4415 airfoil cross section from hub to tip. For both of the linear and nonlinear examples, the aerodynamic loadings (lift, drag and pitch moment) and the nonlinear stiffness matrices were computed at each time step utilizing a time dependent set of parameters such as angle of attack, material and air density, wind and blade speed, flow angle, yaw and pitch angles. Then the unknown displacements u, v and w in the directions of x, y and z axes respectively, the bending rotations theta 1 and theta 2 about the y and z axes respectively and the torsional rotation phi about the x axis, were solved using the linear and nonlinear Newmark implicit iteration schemes. The linear case displacement result plots are shown to agree with the work of Younsi et al. The nonlinear case displacement result plots are shown to agree with the Ls-Dyna code.
机译:许多研究人员使用不同的方法和假设研究了水平轴风力涡轮机叶片对空气动力负载的不同成分做出反应的结构动力学行为。在本研究中,作者考虑了在线性小形变情况下,所有带有叶片的拉伸,扭转和挠性载荷及其联轴器,具有翘曲效应的可变翼型横截面,剪切挠度,旋转惯性以及带或不带叶片预扭转的情况。以及非线性大变形情况。据作者所知,之前尚未同时包含所有这些因素。使用了“假定模式方法”,其中位移被认为是时间步长常数和x的多项式函数(其中x是沿叶片长度的坐标)的乘积的扩展,满足x处的边界条件x = 0(叶片的轮毂)的固定端和x = L(叶片的尖端)的自由端。从逐步得出的拉格朗日运动方程中推导出运动动力学方程的质量矩阵,线性和非线性刚度矩阵以及载荷矢量(时间步的函数)。详细说明了分别用于求解线性和非线性动态运动方程的线性和非线性Newmark隐式迭代方案的步骤。演示了线性和非线性情况下的数值实现示例,其中一个14m长的叶片带有和不带有预扭曲,具有特定的材料和几何特性,并且从轮毂到叶尖的NACA4415机翼横截面减小。对于线性和非线性示例,都使用与时间有关的一组参数(例如迎角,材料和空气密度,风)在每个时间步长计算气动载荷(升力,阻力和俯仰力矩)和非线性刚度矩阵。以及叶片速度,流角,偏航角和俯仰角。然后分别使用x和y分别求解x,y和z轴方向上的未知位移u,v和w,分别围绕y和z轴的弯曲旋转theta 1和theta 2以及围绕x轴的扭转phi。线性和非线性Newmark隐式迭代方案。线性情况下位移结果图表明与Younsi等人的工作一致。非线性情况下的位移结果图显示与Ls-Dyna码一致。

著录项

  • 作者

    Mohammad, Fouad Mohammad.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Mechanical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号