首页> 外文学位 >Structural Determination of Copolymers from the Cross-catalyzed Reactions of Phenol-formaldehyde and Polymeric Methylenediphenyl Diisocyanate.
【24h】

Structural Determination of Copolymers from the Cross-catalyzed Reactions of Phenol-formaldehyde and Polymeric Methylenediphenyl Diisocyanate.

机译:从苯酚-甲醛和聚合的亚甲基二苯基二异氰酸酯的交叉催化反应中确定共聚物的结构。

获取原文
获取原文并翻译 | 示例

摘要

This work reports the elucidation of the structure of a copolymer generated by the cross-catalyzed reactions of PF and pMDI prepolymers. The electronic behavior of phenolic monomers as perturbed by alkali metal hydroxides in an aqueous environment was studied with 1H and 13C NMR. Changes in electronic structure and thus reactivity were related to solvated ionic radius, solvent dielectric constant, and their effect on ion generated electric field strength. NMR chemical shifts were used to predict order of reactivity for phenolic model compounds with phenyl isocyanate with good success. As predicted, 2-HMP hydroxymethyl groups were more reactive than 4-HMP in forming urethane bonds under neutral conditions and 2-HMP hydroxymethyl groups were more reactive than 4-HMP in forming urethane bonds under alkaline conditions.;The structure of the reaction products of phenol, benzyl alcohol, 2-HMP, and 4-HMP with phenyl isocyanate were studied using 1H and 13C NMR under neutral organic and aqueous alkaline conditions. Reactions in THF-d8 under neutral conditions, without catalyst, were relatively slow, resulting in residual monomer and the precipitation of 1,3-diphenyl urea from the carbamic acid reaction. The reactions of phenol, 2-HMP, and 4-HMP in the presence of TEA catalyst favored the formation of phenyl urethanes (PU). Reactions with benzyl alcohol, 2-HMP, and 4-HMP in the presence of DBTL catalyst favored the formation of benzyl urethanes (BU). Reactions of 2-HMP and 4-HMP led to formation of benzylphenyldiurethane (BPDU). DBTL catalysts favored formation of BDPU strictly by a benzyl urethane pathway, while TEA favored its formation mostly via phenyl urethane, although some BU was also present. Under aqueous alkaline conditions, 2-HMP was more reactive than 4-HMP, exhibiting an enhanced reactivity that was attributed to intramolecular hydrogen bonding and a resulting resonance stabilization of the phenolic aromatic ring.;ATR-FTIR spectroscopic studies generated real time structural information for model compound reactions of the cross-catalyzed system, differentiating among reaction peaks generated by the carbamic acid reaction, PU and BU formation. ATR-FTIR also permitted monitoring of propylene carbonate hydrolysis and accelerated alkaline PF resole condensation. ATR-FTIR data also showed that the overall reaction stoichiometry between the PF and pMDI components drove copolymer formation. Benzyl urethane formation predominated under balanced stoichiometric conditions in the presence of ammonium hydroxide, while phenyl urethane formation was favored in its absence. Accelerated phenolic methylene bridge formation became more important when the PF component was in excess in the presence of sufficient accelerator. A high percentage of free isocyanate was present in solid copolymer formed at ambient temperature. The combination of ammonium hydroxide and tin (II) chloride synergistically enhanced the reactivity of the materials, reducing the residual isocyanate.;From 13C CP/MAS NMR of the copolymer, the presence of ammonium hydroxide and tin (II) chloride and the higher PF concentration resulted in substantial urethane formation. Ammonium hydroxide favored formation of benzyl urethane from the 2-hydroxymethyl groups, while phenyl urethane formed in its absence. The low alkalinity PF resole with ammonium hydroxide favored benzyl urethane formation. Comparison of these results with the 13C NMR model compound reactions with phenyl isocyanate under alkaline conditions confirmed high and low alkalinity should favor phenyl and benzyl urethane formation respectively. These cross catalyzed systems are tunable by formulation for type of co-polymer linkages, reactivity, and cost.
机译:这项工作报道了由PF和pMDI预聚物的交叉催化反应生成的共聚物的结构的阐明。用1H和13C NMR研究了在水环境中被碱金属氢氧化物干扰的酚类单体的电子行为。电子结构的变化以及因此的反应性与溶剂化的离子半径,溶剂介电常数及其对离子产生的电场强度的影响有关。 NMR化学位移可用于预测酚模型化合物与异氰酸苯酯的反应顺序,并取得良好的效果。如所预测的,在碱性条件下,2-HMP羟甲基在形成氨基甲酸酯键方面比4-HMP更具活性,在碱性条件下,2-HMP羟甲基在形成氨基甲酸酯键方面比4-HMP活性更高。使用1H和13C NMR在中性有机和碱性水溶液条件下研究了苯酚,苯甲醇,2-HMP和4-HMP与异氰酸苯酯的关系。在无催化剂的中性条件下于THF-d8中的反应相对较慢,导致残留单体,并从氨基甲酸反应中沉淀出1,3-二苯脲。苯酚,2-HMP和4-HMP在TEA催化剂存在下的反应有助于形成苯基氨基甲酸酯(PU)。在DBTL催化剂存在下,与苄醇,2-HMP和4-HMP反应有助于形成苄基氨基甲酸酯(BU)。 2-HMP和4-HMP的反应导致形成苄基苯基二氨基甲酸酯(BPDU)。 DBTL催化剂严格支持通过苄基氨基甲酸酯途径形成BDPU,而TEA则主要通过苯基氨基甲酸酯形成,尽管也存在一些BU。在碱性水溶液中,2-HMP比4-HMP更具反应性,表现出增强的反应性,这归因于分子内氢键和酚芳族环的共振稳定作用;; ATR-FTIR光谱研究产生了实时结构信息模拟交叉催化体系的化合物反应,区分氨基甲酸反应,PU和BU生成所产生的反应峰。 ATR-FTIR还允许监测碳酸亚丙酯的水解和加速碱性PF甲阶酚醛树脂的缩合。 ATR-FTIR数据还表明,PF和pMDI组分之间的总体反应化学计量驱动了共聚物的形成。在平衡的化学计量条件下,在氢氧化铵的存在下,苄基氨基甲酸酯的形成占主导地位,而在不存在苯基氨基甲酸酯的情况下,则有利于苯甲酸乙酯的形成。当在足够的促进剂存在下,PF组分过量时,加速酚亚甲基桥的形成就变得更加重要。在环境温度下形成的固体共聚物中存在高百分比的游离异氰酸酯。氢氧化铵和氯化锡(II)的组合协同增强了材料的反应性,减少了残留的异氰酸酯。;从共聚物的13C CP / MAS NMR数据来看,氢氧化铵和氯化锡(II)的存在以及较高的PF浓缩导致大量氨基甲酸酯形成。氢氧化铵有利于由2-羟甲基形成苄基氨基甲酸酯,而苯基氨基甲酸酯在不存在时形成。具有氢氧化铵的低碱性PF甲阶酚醛树脂有助于形成苄基氨基甲酸酯。将这些结果与13C NMR模型化合物在碱性条件下与异氰酸苯酯的反应进行比较,证实高和低碱度分别有利于苯基和苄基氨基甲酸酯的形成。这些交叉催化的体系可通过配方调节共聚物键的类型,反应性和成本。

著录项

  • 作者

    Haupt, Robert A.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Polymer chemistry.;Wood sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号