首页> 外文学位 >Ion channel basis for alternans, memory and alternans control in individual cardiac myocytes: A computational study.
【24h】

Ion channel basis for alternans, memory and alternans control in individual cardiac myocytes: A computational study.

机译:单个心肌细胞中交替素,记忆和交替素控制的离子通道基础:一项计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Beat-to-beat alternation in action potential amplitude and morphology (alternans) in individual cardiac cells may be important in the development of cardiac arrhythmias. So far, it has been difficult to identify the cause for alternans at the ion channel level because computer models and experiments that display alternans also simultaneously exhibit other confounding rhythm patterns. To address this difficulty, we have developed an eigenmode method to study the dynamics of detailed cardiac cell models under constant pacing. The method completely separates these effects from one another in the linear regime, allowing each to be studied individually. We applied the eigenmode method to both the Beeler-Reuter (BR) and Canine Ventricular Myocyte (CVM) ion channel models to investigate the mechanism by which alternans is produced under conditions of constant, rapid pacing.; For the BR model, alternans was found to be rooted in the opposite phasing of the x1 and f gate perturbations that produces constructive interference between the slow outward and slow inward currents. For the CVM model, we discovered a new mechanism that amplifies small perturbations in the membrane potential in the early plateau through the action of potassium currents leading to a much greater potential perturbation during repolarization. Alternans in the CVM model is then found to be characterized by the coupling of action potential alternans with alternans in the intracellular calcium dynamics through the L-type calcium channel via the mechanisms of calcium induced calcium release, calcium dependent inactivation, voltage dependent activation and this membrane potential perturbation amplification mechanism. We also demonstrate that the amplification mechanism can be used to our advantage to control alternans. We find that the best time to apply the control stimulus is not during the repolarization phase of the action potential, as might otherwise have been expected, but rather during the early plateau phase, when the charge requirements are two orders of magnitude smaller.; The understanding of ion channel basis of alternans can provide new directions for the development of new treatments to cure dangerous cardiac rhythm disorders.
机译:单个心脏细胞中动作电位幅度和形态(交替)的逐跳交替可能在心律不齐的发展中很重要。到目前为止,由于在显示交替素的计算机模型和实验中还同时表现出其他混杂的节奏模式,因此很难在离子通道水平上鉴定交替素的原因。为了解决这个难题,我们开发了一种本征模式方法来研究在恒定起搏下详细的心脏细胞模型的动力学。该方法在线性方案中将这些效应完全分开,从而可以分别研究每种效应。我们将本征模式方法应用于Beeler-Reuter(BR)和犬室性心肌细胞(CVM)离子通道模型,以研究在恒定,快速起搏条件下产生交替糖的机制。对于BR模型,发现交替信号根源于x1和f门扰动的相反相位,从而在缓慢的外向和缓慢的内向电流之间产生相长干涉。对于CVM模型,我们发现了一种新的机制,该机制通过钾电流的作用放大了早期高原膜电位的小扰动,从而导致复极化过程中更大的电势扰动。然后发现CVM模型中的交替素的特征是通过钙诱导的钙释放,钙依赖性失活,电压依赖性活化等机制,通过L型钙通道将动作电位交替素与细胞内钙动力学中的交替素偶联。膜电位扰动放大机制。我们还证明了扩增机制可以利用我们的优势来控制交替蛋白。我们发现,施加控制刺激的最佳时间不是在动作电位的复极化阶段,否则可能是预期的,而是在高原初期,此时的电荷需求要小两个数量级。对奥特那的离子通道基础的了解可以为开发新的治疗危险性心律失常的疗法提供新的方向。

著录项

  • 作者

    Li, Mingyi.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号