首页> 外文学位 >Energy carrier transport in surface-modified carbon nanotubes.
【24h】

Energy carrier transport in surface-modified carbon nanotubes.

机译:表面改性的碳纳米管中的载流子传输。

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotubes are made into films or bulks, their surface or junction morphology in the networks can be modified to obtain desired electrical transport properties by various surface modification methods. The methods include incorporation of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties can be dramatically changed by the modification. This is ideal for developing high-performance materials for thermoelectric and photovoltaic energy conversion applications. In this research, decoration of various organic/inorganic nanomaterials on carbon nanotubes was employed to enhance their electrical conductivity, to improve thermoelectric power factor by modulating their electrical conductance and thermopower, or to obtain n-type converted carbon nanotube. The electrical conductivity of double-wall nanotubes (DWNTs) decorated with tetrafluoro-tetracyanoquinodimethane (F4TCNQ) was increased up to 5.9 x 105 S/m. The sheet resistances were measured to be 42 O /sq at 75% of transmittance for HNO3/SOCl2-treated DWNT films, making their electrical conductivities 200∼300% better than those of the pristine DWNT films. A series of experiments at different ion concentrations and reaction time periods were systematically performed in order to find optimum nanomaterial formation conditions and corresponding electronic transport changes for better thermoelectric power factor. For example, the thermoelectric power factors were improved by ∼180% with F4TCNQ on DWNTs, ∼200% with Cu on SWNTs, and ∼140% with Fe on single-walled nanotubes (SWNTs). Also SWNTs was converted from p-type to n-type with a large thermopower (58 muV/K) by using polyethyleneimine (PEI) without vacuum or controlled environment. This transport behavior is believed to be from charge interactions resulted from the difference between the work functions/reduction potentials of nanotubes and nanomaterials. In addition, different dispersing agents were utilized with DWNT and SWNTs to see a debundling effect in a film network. The highest electrical conductivity of ∼1.72x106 S/m was obtained from DWNT film which was fabricated with a nanotube solution dispersed by chlorosulfonic acid. Debundling of nanotubes in the film network has been demonstrated to be a critical parameter in order to get such high electrical property. In the last experiment, Au nanoparticle decoration on carbon nanotube bundle was performed and a measurement of themophysical properties has done before and after modifying carbon nanotube surface. Carbon nanotube bundle, herein, was bridged on microdevice to enable the measurement work. This study demonstrates a first step toward a breakthrough in order to extract the potential of carbon nanotubes regarding electron transport properties.
机译:碳纳米管被制成薄膜或块状,可以通过各种表面改性方法改性其在网络中的表面或结形,以获得所需的电传输性能。该方法包括掺入有机分子或无机纳米粒子,通过分散剂使纳米管解束以及微波辐射。因为碳纳米管沿着圆柱状石墨片具有独特的载流子传输特性,所以通过改性可以极大地改变其性能。这是开发用于热电和光伏能量转换应用的高性能材料的理想选择。在这项研究中,通过在碳纳米管上装饰各种有机/无机纳米材料来增强其电导率,通过调节其电导率和热功率来提高热电功率因数,或获得n型转化的碳纳米管。用四氟-四氰基喹二甲烷(F4TCNQ)装饰的双壁纳米管(DWNT)的电导率提高到5.9 x 105 S / m。对于HNO3 / SOCl2处理的DWNT膜,在透射率为75%时,薄层电阻测得为42 O / sq,这使其电导率比原始DWNT膜高200-300%。为了找到最佳的纳米材料形成条件和相应的电子传输变化以获得更好的热电功率因数,系统地进行了一系列不同离子浓度和反应时间的实验。例如,DWNT上的F4TCNQ使热电功率因数提高了约180%,SWNT上的Cu使热电功率因数提高了约200%,单壁纳米管(SWNT)的Fe使热电功率因数提高了约140%。此外,通过使用聚乙烯亚胺(PEI)在无真空或受控环境的情况下,SWNT可以在较大的热功率(58 muV / K)下从p型转变为n型。认为该传输行为是由于纳米管和纳米材料的功函数/还原电势之间的差异而引起的电荷相互作用。另外,将不同的分散剂与DWNT和SWNT一起使用,以观察薄膜网络中的去捆绑效果。由DWNT膜获得的最高电导率为1.72x106 S / m,该膜是用分散有氯磺酸的纳米管溶液制成的。为了获得如此高的电性能,薄膜网络中的纳米管去捆扎已被证明是一个关键参数。在最后一个实验中,在碳纳米管束上进行了金纳米粒子装饰,并在修饰碳纳米管表面之前和之后进行了热物理性质的测量。本文中的碳纳米管束桥接在微型设备上,以进行测量工作。这项研究表明了迈向突破的第一步,以便提取碳纳米管在电子传输性能方面的潜力。

著录项

  • 作者

    Ryu, Yeontack.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Mechanical engineering.;Nanotechnology.;Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号