首页> 外文学位 >Role of Mitochondrial Dynamics and Autophagy in Removal of Helix-Distorting Mitochondrial DNA Damage.
【24h】

Role of Mitochondrial Dynamics and Autophagy in Removal of Helix-Distorting Mitochondrial DNA Damage.

机译:线粒体动力学和自噬在消除扭曲螺旋线粒体DNA损伤中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Mitochondria are the primary energy producers of the cell and play key roles in cellular signaling, apoptosis and reactive oxygen species (ROS) production. Mitochondria are the only organelles that contain their own genome which encodes for a small subset of electron transport chain (ETC) proteins as well as the necessary tRNAs and ribosomal subunits to translate these proteins. Over 300 pathogenic mitochondrial DNA (mtDNA) mutations have been shown to cause a number of mitochondrial diseases emphasizing the importance of mtDNA maintenance and integrity to human health. Additionally, mitochondrial dysfunction and mtDNA instability are linked to many wide-spread diseases associated with aging including cancer and neurodegeneration. Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mtDNA by important environmental genotoxins including polycyclic aromatic hydrocarbons, ultraviolet C radiation (UVC) and mycotoxins. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. Degradation of mitochondria and mtDNA is carried out by autophagy. Autophagy is protective against cell stress and apoptosis resulting from exposure to mitochondrial toxicants suggesting that it plays an important role in removal of unstable mitochondria that can serve as a source of ROS or initiate apoptotic cell death. Furthermore, dysfunctional mitochondria can be specifically targeted for degradation by the more specific process of mitophagy influenced in part by the processes of mitochondrial dynamics (i.e., fusion and fission).;The goals of this dissertation were to investigate the long-term fate of helix-distorting mtDNA damage and determine the significance of autophagy and mitochondrial dynamics in removal of and recovery from persistent mtDNA damage. Removal of irreparable mtDNA damage and the necessity of autophagy, mitophagy, fusion and fission genes in removal of this damage were examined using genetic approaches in adult Caenorhabditis elegans. In order to investigate the significance of autophagy, fusion and fission genes in recovery from mtDNA damage-induced mitochondrial dysfunction in vivo, an experimental method was developed to specifically induce persistent mtDNA damage and mitochondrial dysfunction without persistent nDNA damage in developing C. elegans. Additionally, the effect of persistent helix-distorting DNA damage on mitochondrial morphology, mitochondrial function and autophagy was investigated in C. elegans and in mammalian cell culture. The rate and specificity of mitochondrial degradation was further examined in cell culture using live-cell fluorescence microscopy and transmission electron microscopy.;Removal of UVC-induced mtDNA damage was detectable by 72 hours in C. elegans and mammalian cell culture, and required mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. UVC exposure induced autophagy with no detectable effect on mitochondrial morphology in both systems; mitochondrial function was inhibited in the C. elegans system but not in the cell culture system in which the degree of mtDNA damage induced was less. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.
机译:线粒体是细胞的主要能量产生者,在细胞信号传导,细胞凋亡和活性氧(ROS)产生中起关键作用。线粒体是唯一包含其自身基因组的细胞器,该基因组编码一小部分电子传输链(ETC)蛋白以及翻译这些蛋白所需的tRNA和核糖体亚基。已有超过300种致病性线粒体DNA(mtDNA)突变引起许多线粒体疾病,强调了mtDNA维持和完整性对​​人类健康的重要性。此外,线粒体功能障碍和mtDNA不稳定与许多与衰老相关的广泛疾病有关,包括癌症和神经变性。线粒体缺乏修复某些螺旋变形损伤的能力,这些损伤是由重要的环境遗传毒素(包括多环芳香烃,紫外线C辐射(UVC)和霉菌毒素)在mtDNA中高水平诱导的。这些病变在短期内是无法修复且持久的,但其长期命运尚不得而知。线粒体和mtDNA的降解是通过自噬进行的。自噬可保护细胞免于因接触线粒体毒物而引起的细胞应激和凋亡,这表明自噬在清除不稳定的线粒体中起重要作用,线粒体可作为ROS的来源或引发凋亡性细胞死亡。此外,功能失调的线粒体可以通过线粒体动力学(即融合和裂变)过程影响的更具体的线粒体降解过程而专门针对降解。;本论文的目的是研究螺旋线的长期命运扭曲线粒体DNA损伤,并确定自噬和线粒体动力学在消除和恢复持续性线粒体DNA损伤中的重要性。使用遗传方法对成年秀丽隐杆线虫检查了不可修复的mtDNA损伤的去除以及自噬,线粒体,融合和裂变基因在去除这种损伤中的必要性。为了研究自噬,融合和裂变基因在体内从mtDNA损伤引起的线粒体功能障碍恢复中的意义,开发了一种实验方法,专门诱导持续性mtDNA损伤和线粒体功能障碍,而在发育中的秀丽隐杆线虫中没有持续的nDNA损伤。此外,在秀丽隐杆线虫和哺乳动物细胞培养物中研究了持续扭曲螺旋的DNA损伤对线粒体形态,线粒体功能和自噬的影响。使用活细胞荧光显微镜和透射电镜进一步检查细胞培养中线粒体降解的速率和特异性。在秀丽隐杆线虫和哺乳动物细胞培养物中72小时可检测到UVC诱导的mtDNA损伤的去除,并且需要线粒体融合,裂变和自噬,为新的mtDNA损伤清除途径提供了遗传学证据。 UVC暴露诱导自噬,对两个系统的线粒体形态均无可检测的影响;线粒体功能在秀丽隐杆线虫系统中受到抑制,但在诱导mtDNA损伤程度较小的细胞培养系统中却没有受到抑制。此外,参与这些过程的基因突变以及自噬的药理抑制作用加剧了mtDNA损伤介导的幼虫停滞,说明了消除持续性mtDNA损伤的体内相关性。这些途径中的基因突变存在于人类中,这表明在暴露基因毒素后重要的基因-环境相互作用可能影响线粒体的健康。

著录项

  • 作者

    Bess, Amanda Smith.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Health Sciences Toxicology.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号