首页> 外文学位 >Characterization of the roles of phosholipase B1 and the cyclic-AMP (cAMP)-protein kinase A (PKA) pathway in nutritional and osmotic stress response in Schizosaccharomyces pombe.
【24h】

Characterization of the roles of phosholipase B1 and the cyclic-AMP (cAMP)-protein kinase A (PKA) pathway in nutritional and osmotic stress response in Schizosaccharomyces pombe.

机译:表征磷脂酶B1和环状AMP(cAMP)-蛋白激酶A(PKA)途径在粟酒裂殖酵母的营养和渗透胁迫响应中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Physiological stress is a reality faced by all cells. Even though these stresses are often disruptive of normal cellular function, cells must adapt to the stressor or perish. This study utilizes the model organism Schizosaccharomyces pombe, commonly known as fission yeast, to study a novel stress response pathway for adaptation to nutrient deprivation and hyperosmotic stress involving phospholipase B1 (Plb1) and components of the cyclic-AMP (cAMP)-protein kinase A (PKA) pathway. A previous study showed that deletion of plb1 confers sensitivity to hyperosmotic stress in the form of potassium chloride (KCl). This phenotype could be rescued by over-expression of components of the cAMP-PKA pathway, and likewise, deletion of these components also lead to KCl sensitivity phenotypes. This study shows that deletion of these genes also correlates with increased fragmentation of mitochondria under conditions of hyperosmotic stress. Interestingly, addition of rotenone or loss of mitochondrial PE synthesis—conditions that have previously been associated with increased mitochondrial fragmentation—exacerbated phenotypes of the plb1Δ mutant. Mitochondrial fragmentation was also accompanied by increased mitophagy in KCl-treated plb1Δ cells. Cell cycle arrest in G2/M and cytokinesis was observed in KCl-treated cells in which the gene encoding the PKA catalytic subunit pka1 had been deleted. These phenotypes—mitochondrial fragmentation and failure to complete cytokinesis—may be due to deregulation of PS and PE synthesis and cellular distribution.;In addition to participating in hyperosmotic stress response, Plb1 and the cAMP-PKA pathway cooperate to respond to nutrient deprivation. The function of the cAMP-PKA pathway in glucose sensing is well established in yeast. Previous studies have suggested a role for phospholipases B (PLBs) in nutrient scavenging, though a limited number of studies have examined how nutrient content affects secretion of these PLBs. In this study, we have found that the secretion of Plb1 is increased in nutrient-poor media. In particular, glucose content greatly affects Plb1 secretion, since incubation in low glucose media highly increases secretion whereas addition of glucose reduces secretion. Since the cAMP-PKA pathway is responsible for detecting glucose in the media, we predicted that deletion of pka1 would lead to increased Plb1 secretion. However, Plb1 secretion was not appreciably altered in a pka1Δ mutant. Interestingly, pka1Δ mutant cells did have increased levels of Plb1 protein, and the localization of Plb1 in these cells resembled that seen in glucose-starved cells, suggesting that Plb1 and the cAMP-PKA pathway may interact with regards to glucose sensing.
机译:生理压力是所有细胞都面临的现实。即使这些压力通常会破坏正常的细胞功能,细胞也必须适应压力源或灭亡。这项研究利用模式生物Schizosaccharomyces pombe(通常称为裂变酵母)来研究一种新的胁迫反应途径,以适应营养缺乏和高渗胁迫,其中涉及磷脂酶B1(Plb1)和环状AMP(cAMP)-蛋白激酶A的成分(PKA)途径。先前的研究表明,删除plb1会以氯化钾(KCl)的形式赋予对高渗胁迫的敏感性。该表型可以通过cAMP-PKA途径的组分的过表达来挽救,同样,这些组分的缺失也导致KCl敏感性表型。这项研究表明,在高渗胁迫下,这些基因的缺失还与线粒体片段化的增加有关。有趣的是,鱼藤酮的添加或线粒体PE合成的丧失(以前与线粒体片段化增加有关的情况)加剧了plb1Δ突变体的表型。线粒体破碎还伴随着氯化钾处理的plb1Δ细胞中的线粒体增多。在KCl处理的细胞中观察到了G2 / M的细胞周期停滞和胞质分裂,其中编码PKA催化亚基pka1的基因已被删除。这些表型-线粒体断裂和无法完成胞质分裂-可能是由于PS和PE合成及细胞分布的失调所致。除了参与高渗应激反应外,Plb1和cAMP-PKA途径还共同对营养缺乏做出反应。在酵母中,cAMP-PKA途径在葡萄糖感测中的功能已得到充分确立。先前的研究表明磷脂酶B(PLB)在清除营养中起着一定的作用,尽管数量有限的研究已经检查了营养成分如何影响这些PLB的分泌。在这项研究中,我们发现营养不良的培养基中Plb1的分泌增加了。特别是,葡萄糖含量会极大地影响Plb1的分泌,因为在低葡萄糖培养基中孵育会大大增加分泌,而添加葡萄糖会减少分泌。由于cAMP-PKA通路负责检测培养基中的葡萄糖,因此我们预测pka1的缺失将导致Plb1分泌增加。然而,在pka1Δ突变体中,Plb1的分泌没有明显改变。有趣的是,pka1Δ突变细胞确实具有增加的Plb1蛋白水平,并且这些细胞中Plb1的定位类似于在葡萄糖饥饿的细胞中所见的定位,这表明Plb1和cAMP-PKA途径可能在葡萄糖感测方面相互作用。

著录项

  • 作者

    McInnis, Brittney Morgan.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号