首页> 外文学位 >In-plane thermoelectric properties of silicon/germanium superlattices.
【24h】

In-plane thermoelectric properties of silicon/germanium superlattices.

机译:硅/锗超晶格的面内热电特性。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, investigation of thermoelectric enhancement through low dimensional material property engineering is a popular topic in research filed. Several low dimensional material systems, including Si/Ge superlattice, have been studied for that purpose. In this thesis, we investigated the in-plane thermoelectric transport properties in Si/Ge superlattices. The basic principle of low dimensional thermoelectric enhancement is the quantum size effect. The proof-of-principle ZT enhancement has been observed experimentally on Si/Ge superlattice. However, it was found that electron transport properties are not only affected by the quantum size effect at low dimension. Based on that, we developed a hybrid model that incorporate both quantum and classical size effects for the electron in-plane transport in the superlattice system. The model, with strain induced band regulation in consideration, was successfully applied to characterize the measured thermoelectric transport properties obtained from the strained Si/Ge superlattice samples. It demonstrated that the classical size, which is ignored in previous theoretical works, is the cause of the power factor degradation. We developed the 2-wire 3o measurement technique and measured the anisotropic thermal conductivity of Si/Ge superlattices. The measured data demonstrated great thermal conductivity reduction effect along both in-plane and cross-plane directions. The phonon scattering mechanisms at low dimension along both in-plane and cross-plane directions are analyzed with different models. Theoretical analysis demonstrated that the phonon partial diffuse and partial specular scattering at the interface is the major mechanism that account for the great thermal conductivity reduction at both in-plane and cross-plane directions. The in-plane temperature dependent ZT values of Si/Ge superlattice are obtained for the first time from experiment. The results indicated that both quantum size effect and classical size effect are important at nanometer dimension. Further increase of ZT rely on the improvement of material growth technology and new approaches to engineering the material properties.
机译:近年来,通过低维材料特性工程进行热电增强的研究是研究领域中的热门话题。为此,已经研究了几种低维材料系统,包括Si / Ge超晶格。本文研究了硅/锗超晶格的面内热电输运特性。低维热电增强的基本原理是量子尺寸效应。在Si / Ge超晶格上实验观察到原理性ZT增强。但是,发现电子传输性质不仅受到低尺寸时的量子尺寸效应的影响。在此基础上,我们开发了一种混合模型,该模型结合了量子和经典尺寸效应,用于超晶格系统中的电子面内传输。该模型,考虑到应变感应带调节,已成功应用于表征从应变Si / Ge超晶格样品获得的热电输运特性。结果表明,经典尺寸是功率因数下降的原因,而先前的理论著作中却忽略了它。我们开发了2线3o测量技术,并测量了Si / Ge超晶格的各向异性热导率。实测数据表明,沿面内和横截面方向的热导率降低效果都很好。利用不同的模型分析了沿面内和横截面方向的低维声子散射机理。理论分析表明,声子在界面处的部分扩散和部分镜面散射是导致面内和横截面两个方向热导率大幅降低的主要机理。首次从实验中获得了Si / Ge超晶格的面内温度相关ZT值。结果表明,在纳米尺度上,量子尺寸效应和经典尺寸效应均很重要。 ZT的进一步增加依赖于材料生长技术的改进和工程材料性能的新方法。

著录项

  • 作者

    Liu, Weili.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号